
Introduction to Cloud, MapReduce,

Hadoop, HDFS

Thanks to D. Tsoumakos for the slides

Material adapted from slides by Jimmy Lin, The iSchool – University of Maryland

And from www.cloudcomputingchina.com

The Big Data era

The 3 (or more) Vs

How much data?

Hadoop: 10K nodes,

150K cores, 150 PB

(4/2014)

Processes 20 PB a day (2008)

Crawls 20B web pages a day (2012)

Search index is 100+ PB (5/2014)

Bigtable serves 2+ EB, 600M QPS

(5/2014)

300 PB data in Hive +

600 TB/day (4/2014)

400B pages,

10+ PB

(2/2014)

LHC: ~15 PB a year

LSST: 6-10 PB a year

(~2020) 640K ought to be

enough for

anybody.

150 PB on 50k+ servers

running 15k apps (6/2011)

S3: 2T objects, 1.1M

request/second (4/2013)

SKA: 0.3 – 1.5 EB

per year (~2020)

Hadoop: 365 PB, 330K

nodes (6/2014)

1 EB (Exabyte=1018bytes) = 1000 PB (Petabyte=1015bytes)

Κίνηση δεδομένων κινητής τηλεφωνίας στις ΗΠΑ για το 2010

1.2 ZB (Zettabyte) = 1200 EB
Σύνολο ψηφιακών δεδομένων το 2010

35 ZB (Zettabyte = 1021 bytes)
Εκτίμηση για σύνολο ψηφιακών
δεδομένων το 2020

No data like more data!

(Banko and Brill, ACL 2001)

(Brants et al., EMNLP 2007)

s/knowledge/data/g;

How do we get here if we’re not Google?

Emergence of the 4th

Paradigm

Data-intensive e-Science Maximilien Brice, © CERN

Science

Engineering
The unreasonable effectiveness of data

Count and normalize!

Source: Wikipedia (Three Gorges Dam)

Commerce

Know thy customers

Data  Insights  Competitive advantages

Source: Wikiedia (Shinjuku, Tokyo)

How it all started…

Τι κάνει η Google;

1. crawling

2. indexing

3. $$$

Πώς δεικτοδοτείς το διαδίκτυο;

 Πάνω από 1 τρις μοναδικά URLs

 Δισεκατομμύρια μοναδικές ιστοσελίδες

 Exabytes κειμένου

Ένα Google Datacenter

...κι από μέσα

 Εκατομμύρια cores

 ~20k κόμβοι για ένα tasks

What is cloud computing?

Just a buzzword?

 Before clouds…

 P2P computing

 Grids

 HPC

 …

 Cloud computing means many different things:

 Large-data processing

 Rebranding of web 2.0

 Utility computing

 Everything as a service

Rebranding of web 2.0

 Rich, interactive web applications

 Clouds refer to the servers that run them

 AJAX as the de facto standard (for better or worse)

 Examples: Facebook, YouTube, Gmail, …

 “The network is the computer”: take two

 User data is stored “in the clouds”

 Rise of the netbook, smartphones, etc.

 Browser is the OS

Utility Computing

 What?

 Computing resources as a metered service (“pay as you go”)

 Ability to dynamically provision virtual machines

 Why?

 Cost: capital vs. operating expenses

 Scalability: “infinite” capacity

 Elasticity: scale up or down on demand

 Does it make sense?

 Benefits to cloud users

 Business case for cloud providers

I think there is a world

market for about five

computers.

Enabling Technology: Virtualization

Hardware

Operating System

App App App

Traditional Stack

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

Cloud computing market

Hardware provider

Cloud technology enabler

Infrastructure as a service

Platform as a service

Software as a service Everything is a service

Everything as a Service

 Utility computing = Infrastructure as a Service (IaaS)

 Why buy machines when you can rent cycles?

 Examples: Amazon’s EC2, Rackspace

 Platform as a Service (PaaS)

 Give me nice API and take care of the maintenance, upgrades, …

 Example: Google App Engine

 Software as a Service (SaaS)

 Just run it for me!

 Example: Gmail, Salesforce

How do we scale up?

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

Parallelization Challenges

 How do we assign work units to workers?

 What if we have more work units than workers?

 What if workers need to share partial results?

 How do we aggregate partial results?

 How do we know all the workers have finished?

 What if workers die?

What is the common theme of all of these problems?

Synchronization!

 Parallelization problems arise from:

 Communication between workers (e.g., to exchange state)

 Access to shared resources (e.g., data)

 Thus, we need a synchronization mechanism

Managing Multiple Workers

 Difficult because

 We don’t know the order in which workers run

 We don’t know when workers interrupt each other

 We don’t know the order in which workers access shared data

 Thus, we need:

 Semaphores (lock, unlock)

 Conditional variables (wait, notify, broadcast)

 Barriers

 Still, lots of problems:

 Deadlock, livelock, race conditions...

 Dining philosophers, sleeping barbers, cigarette smokers...

 Moral of the story: be careful!

Current Tools

 Programming models

 Shared memory (pthreads)

 Message passing (MPI)

 Design Patterns

 Master-slaves

 Producer-consumer flows

 Shared work queues

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
e

m
o

ry

master

slaves

producer consumer

producer consumer

work queue

What’s the point?

 It’s all about the right level of abstraction

 The von Neumann architecture has served us well, but is no longer

appropriate for the multi-core/cluster environment

 Hide system-level details from the developers

 No more race conditions, lock contention, etc.

 Separating the what from how

 Developer specifies the computation that needs to be performed

 Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

MapReduce

What is MapReduce?

 Programming model for expressing distributed

computations at a massive scale

 Execution framework for organizing and performing such

computations

 Open-source implementation called Hadoop

Typical Large-Data Problem

 Iterate over a large number of records

 Extract something of interest from each

 Shuffle and sort intermediate results

 Aggregate intermediate results

 Generate final output

Key idea: provide a functional abstraction for

these two operations

(Dean and Ghemawat, OSDI 2004)

Challenges

1. Cheap nodes fail, especially if you have many

 Mean time between failures for 1 node = 3 years

 Mean time between failures for 1000 nodes = 1 day

 Solution: Build fault-tolerance into system

2. Commodity network = low bandwidth

 Solution: Push computation to the data

3. Programming distributed systems is hard

 Solution: Data-parallel programming model: users write “map” &

“reduce” functions, system distributes work and handles faults

MapReduce

 Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’’, v’’>*

 All values with the same key are sent to the same reducer

 The execution framework handles everything else…

What’s “everything else”?

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce “Runtime”

 Handles scheduling

 Assigns workers to map and reduce tasks

 Handles “data distribution”

 Moves processes to data

 Handles synchronization

 Gathers, sorts, and shuffles intermediate data

 Handles errors and faults

 Detects worker failures and restarts

 Everything happens on top of a distributed FS

MapReduce

 Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’’, v’’>*

 All values with the same key are reduced together

 The execution framework handles everything else…

 Not quite…usually, programmers also specify:

partition (k’, number of partitions) → partition for k’

 Often a simple hash of the key, e.g., hash(k’) mod n

 Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*

 Mini-reducers that run in memory after the map phase

 Used as an optimization to reduce network traffic

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

Two more details…

 Barrier between map and reduce phases

 But we can begin copying intermediate data earlier

 Keys arrive at each reducer in sorted order

 No enforced ordering across reducers

MapReduce Execution

 Single master controls job execution on multiple slaves

 Mappers preferentially placed on same node or same rack

as their input block

 Minimizes network usage

 Mappers save outputs to local disk before serving them to

reducers

 Allows recovery if a reducer crashes

 Allows having more reducers than nodes

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

“Hello World”: Word Count

Map(String docid, String text):

 for each word w in text:

 Emit(w, 1);

Reduce(String term, Iterator<Int> values):

 int sum = 0;

 for each v in values:

 sum += v;

 Emit(term, value);

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 2

fox, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Search Example

 Input: (lineNumber, line) records

 Output: lines matching a given pattern

 Map:

 if(line matches pattern):
 output(line)

 Reduce: identify function

 Alternative: no reducer (map-only job)

pig

sheep

yak

zebra

aardvark

ant

bee

cow

elephant

Sort Example

 Input: (key, value) records

 Output: same records, sorted by key

 Map: identity function

 Reduce: identify function

 Trick: Pick partitioning

function h such that

k1<k2 => h(k1)<h(k2)

Map

Map

Map

Reduce

Reduce

ant, bee

zebra

aardvark,

elephant

cow

pig

sheep, yak

[A-M]

[N-Z]

Inverted Index Example

 Input: (filename, text) records

 Output: list of files containing each word

 Map:

 foreach word in text.split():
 output(word, filename)

 Combine: uniquify filenames for each word

 Reduce:
 def reduce(word, filenames):
 output(word, sort(filenames))

Inverted Index Example

to be or
not to be afraid, (12th.txt)

be, (12th.txt, hamlet.txt)
greatness, (12th.txt)

not, (12th.txt, hamlet.txt)
of, (12th.txt)

or, (hamlet.txt)
to, (hamlet.txt)

hamlet.txt

be not
afraid of
greatness

12th.txt

to, hamlet.txt
be, hamlet.txt
or, hamlet.txt
not, hamlet.txt

be, 12th.txt
not, 12th.txt
afraid, 12th.txt
of, 12th.txt
greatness, 12th.txt

Most Popular Words Example

 Input: (filename, text) records

 Output: top 100 words occurring in the most files

 Two-stage solution:

 Job 1:

• Create inverted index, giving (word, list(file)) records

 Job 2:

• Map each (word, list(file)) to (count, word)

• Sort these records by count as in sort job

 Optimizations:

 Map to (word, 1) instead of (word, file) in Job 1

 Count files in job 1’s reducer rather than job 2’s mapper

 Estimate count distribution in advance and drop rare words

Fault Tolerance in MapReduce

1. If a task crashes:

 Retry on another node

• OK for a map because it has no dependencies

• OK for reduce because map outputs are on disk

 If the same task fails repeatedly, fail the job or ignore that

input block (user-controlled)

 Note: For these fault tolerance features to work, your

map and reduce tasks must be side-effect-free

Fault Tolerance in MapReduce

2. If a node crashes:

 Re-launch its current tasks on other nodes

 Re-run any maps the node previously ran

• Necessary because their output files were lost along with

the crashed node

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

 Launch second copy of task on another node (“speculative

execution”)

 Take the output of whichever copy finishes first, and kill the

other

 Surprisingly important in large clusters

 Stragglers occur frequently due to failing hardware, software

bugs, misconfiguration, etc

 Single straggler may noticeably slow down a job

Takeaways

 By providing a data-parallel programming model,

MapReduce can control job execution in useful ways:

 Automatic division of job into tasks

 Automatic placement of computation near data

 Automatic load balancing

 Recovery from failures & stragglers

 User focuses on application, not on complexities of

distributed computing

Hadoop Components

 Distributed file system (HDFS)

 Single namespace for entire cluster

 Replicates data 3x for fault-tolerance

 MapReduce framework

 Executes user jobs specified as “map” and “reduce”

functions

 Manages work distribution & fault-tolerance

MapReduce Implementations

 Google has a proprietary implementation in C++

 Bindings in Java, Python

 Hadoop is an open-source implementation in Java

 Development led by Yahoo, now an Apache project

 Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix,

…

 The de facto big data processing platform

 Large and expanding software ecosystem

 Lots of custom research implementations

 For GPUs, cell processors, etc.

Distributed File System

 Don’t move data to workers… move workers to the data!

 Store data on the local disks of nodes in the cluster

 Start up the workers on the node that has the data local

 Why?

 Not enough RAM to hold all the data in memory

 Disk access is slow, but disk throughput is reasonable

 A distributed file system is the answer

 GFS (Google File System) for Google’s MapReduce

 HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

 Commodity hardware over “exotic” hardware

 Scale “out”, not “up”

 High component failure rates

 Inexpensive commodity components fail all the time

 “Modest” number of huge files

 Multi-gigabyte files are common, if not encouraged

 Files are write-once, mostly appended to

 Perhaps concurrently

 Large streaming reads over random access

 High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

GFS: Design Decisions

 Files stored as chunks

 Fixed size (64MB)

 Reliability through replication

 Each chunk replicated across 3+ chunkservers

 Single master to coordinate access, keep metadata

 Simple centralized management

 No data caching

 Little benefit due to large datasets, streaming reads

 Simplify the API

 Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS

 Terminology differences:

 GFS master = Hadoop namenode

 GFS chunkservers = Hadoop datanodes

 Differences:

 Different consistency model for file appends

 Implementation

 Performance

For the most part, we’ll use Hadoop terminology…

Hadoop Distributed File System

 Files split into 64MB blocks

 Blocks replicated across several

datanodes (usually 3)

 Single namenode stores metadata

(file names, block locations, etc)

 Optimized for large files,

sequential reads

 Files are append-only

Namenode

Datanodes

1

2

3

4

1

2

4

2

1

3

1

4

3

3

2

4

File1

Namenode Responsibilities

 Managing the file system namespace:

 Holds file/directory structure, metadata, file-to-block mapping,

access permissions, etc.

 Coordinating file operations:

 Directs clients to datanodes for reads and writes

 No data is moved through the namenode

 Maintaining overall health:

 Periodic communication with the datanodes

 Block re-replication and rebalancing

 Garbage collection

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace

/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

Typical Hadoop Cluster

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-

2009.pdf

