Big Data & Hadoop

Introduction to Cloud, MapReduce,
Hadoop, HDFS
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The Big Data era
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Processes 20 PB a day (2008)
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How much data
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No data like more data!
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How do we get here if we’re not Google?









Know thy customers

Data — Insights — Competitive advantage

Commerce
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How it all started...
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1. crawling

2. Indexing
3. $3%
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2007: Universal Search

Cache servers

Google |
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‘Eva Google Datacenter
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What is cloud computing?



oh

=8| (0
ANgRT

Just a buzzword?

o Before clouds...

e P2P computing
e Grids
e HPC

o Cloud computing means many different things:

e Large-data processing
e Rebranding of web 2.0
e Ultility computing

e Everything as a service
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Rebranding of web 2.0
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o Rich, interactive web applications

e Clouds refer to the servers that run them
e AJAX as the de facto standard (for better or worse)
e Examples: Facebook, YouTube, Gmail, ...

o “The network is the computer”: take two

e User data is stored “in the clouds”
e Rise of the netbook, smartphones, etc.
e Browser is the OS



Utility Computing

o What?

e Computing resources as a metered service (“pay as you go”)
e Ability to dynamically provision virtual machines

o Why?

e Cost: capital vs. operating expenses

e Scalability: “infinite” capacity

e Elasticity: scale up or down on demand
o Does it make sense?

e Benefits to cloud users
e Business case for cloud providers

| think there is a world
market for about five
computers.
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Operating System [ Hypervisor }
Hardware Hardware

Traditional Stack Virtualized Stack



Cloud computing market

Software as a service Everything is a service
Platform as a service

Infrastructure as a service

Hardware provider



Everything as a Service

o Utility computing = Infrastructure as a Service (laaS)

e Why buy machines when you can rent cycles?
e Examples: Amazon’s EC2, Rackspace

o Platform as a Service (PaaS)

e Give me nice APl and take care of the maintenance, upgrades, ...
e Example: Google App Engine

o Software as a Service (SaaS)

e Justrun it for mel!
e Example: Gmail, Salesforce



How do we scale up?
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Parallelization Challenges

O
O
O
O
O
O

How do we assign work units to workers?

What if we have more work units than workers?
What if workers need to share partial results?
How do we aggregate partial results?

How do we know all the workers have finished?

What if workers die?

What is the common theme of all of these problems?



Synchronization!

o Parallelization problems arise from:

e Communication between workers (e.g., to exchange state)
e Access to shared resources (e.g., data)

o Thus, we need a synchronization mechanism



Managing Multiple Workers

o Difficult because

e We don’t know the order in which workers run
e We don't know when workers interrupt each other
e We don’t know the order in which workers access shared data

o Thus, we need:

e Semaphores (lock, unlock)
e Conditional variables (wait, notify, broadcast)
e Barriers

o Sitill, lots of problems:

e Deadlock, livelock, race conditions...
e Dining philosophers, sleeping barbers, cigarette smokers...

o Moral of the story: be careful!



Current Tools

o Programming models

vy

e Shared memory (pthreads) .
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e Message passing (MPI) vyVYVY

P, P, P, P, P,

o Design Patterns

e Master-slaves
e Producer-consumer flows
e Shared work queues
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What’s the point?

o It's all about the right level of abstraction

e The von Neumann architecture has served us well, but is no longer
appropriate for the multi-core/cluster environment

o Hide system-level details from the developers

e NoO more race conditions, lock contention, etc.

o Separating the what from how

e Developer specifies the computation that needs to be performed
e Execution framework (“runtime”) handles actual execution

The datacenter is the computer!



MapReduce



What is MapReduce?

o Programming model for expressing distributed
computations at a massive scale

o Execution framework for organizing and performing such
computations

o Open-source implementation called Hadoop

" =[a/a]a]5)




Typical Large-Data Problem

o lIterate over a large number of records
Mﬂﬁxtract something of interest from each

o Shuffle and sort intermediate results

o Aggregate intermediate resaléduce

o Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)
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Cheap nodes fail, especially if you have many

e Mean time between failures for 1 node = 3 years
e Mean time between failures for 1000 nodes = 1 day
e Solution: Build fault-tolerance into system

Commodity network = low bandwidth

e Solution: Push computation to the data

Programming distributed systems is hard

e Solution: Data-parallel programming model: users write “map” &
“reduce” functions, system distributes work and handles faults




MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v'>*
reduce (K, V') — <k”, v’>*
e All values with the same key are sent to the same reducer

o The execution framework handles everything else...

What’s “everything else”?
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MapReduce “Runtime”

o Handles scheduling
e Assigns workers to map and reduce tasks

o Handles “data distribution”
e Moves processes to data
o Handles synchronization
e Gathers, sorts, and shuffles intermediate data

o Handles errors and faults
e Detects worker failures and restarts

o Everything happens on top of a distributed FS




MapReduce

o Programmers specify two functions:
map (k, v) — <k’, v'>*
reduce (K, V') — <k, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...

o Not quite...usually, programmers also specify:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic
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Two more details...

o Barrier between map and reduce phases

e But we can begin copying intermediate data earlier

o Keys arrive at each reducer in sorted order

e No enforced ordering across reducers



MapReduce Execution

o Single master controls job execution on multiple slaves

o Mappers preferentially placed on same node or same rack
as their input block

e Minimizes network usage

o Mappers save outputs to local disk before serving them to
reducers

e Allows recovery if a reducer crashes
e Allows having more reducers than nodes



User
Program

i (1) submit

(2) sqhedt]le map (2) éb‘hgdule reduce

-
-

A
worker >

splft 1 (3) read | file O

split 2 (4) local write

split 3 g

split 4 output

file 1

worker >

Input Map Intermediate files Reduce Output

files phase (on local disk) phase files

Adapted from (Dean and Ghemawat, OSDI 2004)



““Hello World”: Word Count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<Int> values):

int sum = 0O;

for each v in values:
sum +=v;
Emit(term, value);




Word Count Execution

Input Map Shuffle & Sort  Reduce
ﬂ the, 1 ﬂ
) brown, 1
the quick fox, 1 brown, 2
brown fox fox 2
Reduce }——» ’
how, 1
now, 1
the, 3
the fox ate |
the mouse
:zx’ ; ate, 1 ate, 1
br'owln, 1 mouse, 1 Reduce }—} cow, 1
how now mouse, 1
brown cow quick, 1




Word Count with Combiner

Input

A

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map & Combine Shuffle & Sort

the, 1
brown, 1
fox, 1

how, 1
now, 1
brown, 1

ate, 1
mouse, 1

Reduce

Reduce }——»

Reduce }——P

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1

quick, 1
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Search Example

o Input: (lineNumber, line) records

o Output: lines matching a given pattern

o Map:
if(line matches pattern):
output(line)

o Reduce: identify function
e Alternative: no reducer (map-only job)
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Sort Example
o Input: (key, value) records

o Output: same records, sorted by key

o Map: identity function [A-M]

o Reduce: identify function

bee
cow
elephant

aardvark, [N-Z]

o Trick: Pick partitioning elephant
function h such that

ki<ks, => h(ky)<h(k,)

sheep, yak



Inverted Index Example

o Input: (filename, text) records

o Output: list of files containing each word

o Map:
foreach word in text.split():
output(word, filename)

o Combine: uniquify filenames for each word

o Reduce:
def reduce(word, filenames):
output(word, sort(filenames))



Inverted Index Example

ﬂhamle‘r.tx‘r

to be or
not to be

A 12th_+xt

be not
afraid of
greatness

to, hamlet.txt
be, hamlet.txt

or, hamlet.txt \

not, hamlet.txt

be, 12th.txt

not, 12th.txt /
afraid, 12th.txt

of, 12th.txt

greatness, 12th.txt

A

afraid, (12th.txt)
be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
or, (hamlet.txt)
to, (hamlet.txt)
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Most Popular Words Example

Q\$0\ 54

o Input: (filename, text) records

o Output: top 100 words occurring in the most files

o Two-stage solution:

e Job 1:

» Create inverted index, giving (word, list(file)) records
e Job 2:

» Map each (word, list(file)) to (count, word)
» Sort these records by count as in sort job

o Optimizations:

e Map to (word, 1) instead of (word, file) in Job 1
e Countfiles in job 1's reducer rather than job 2’s mapper
e Estimate count distribution in advance and drop rare words



Fault Tolerance in MapReduce

1. If a task crashes:

e Retry on another node

« OK for a map because it has no dependencies

* OK for reduce because map outputs are on disk

e If the same task fails repeatedly, fail the job or ignore that
Input block (user-controlled)

» Note: For these fault tolerance features to work, your
map and reduce tasks must be side-effect-free



Fault Tolerance in MapReduce

2. If a node crashes:
e Re-launch its current tasks on other nodes
e Re-run any maps the node previously ran

* Necessary because their output files were lost along with
the crashed node
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Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

e Launch second copy of task on another node (“speculative
execution”)
e Take the output of whichever copy finishes first, and kill the

other

o Surprisingly important in large clusters

e Stragglers occur frequently due to failing hardware, software
bugs, misconfiguration, etc
e Single straggler may noticeably slow down a job



Takeaways

o By providing a data-parallel programming model,
MapReduce can control job execution in useful ways:
e Automatic division of job into tasks
e Automatic placement of computation near data
e Automatic load balancing
e Recovery from failures & stragglers

o User focuses on application, not on complexities of
distributed computing



Hadoop Components

o Distributed file system (HDFS)

e Single namespace for entire cluster
e Replicates data 3x for fault-tolerance

o MapReduce framework

e Executes user jobs specified as “map” and “reduce”
functions

e Manages work distribution & fault-tolerance
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MapReduce Implementations

Q\$0\ %

o Google has a proprietary implementation in C++

e Bindings in Java, Python

o Hadoop is an open-source implementation in Java

e Development led by Yahoo, now an Apache project
e Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix,

e The de facto big data processing platform
e Large and expanding software ecosystem

o Lots of custom research implementations

e For GPUs, cell processors, etc.

”a]ag_r}




Distributed File System

o Don’t move data to workers... move workers to the data!

e Store data on the local disks of nodes in the cluster
e Start up the workers on the node that has the data local

o Why?

e Not enough RAM to hold all the data in memory
e Disk access is slow, but disk throughput is reasonable

o A distributed file system is the answer

e GFS (Google File System) for Google’s MapReduce
e HDFS (Hadoop Distributed File System) for Hadoop



GFS: Assumptions

o Commodity hardware over “exotic” hardware

e Scale “out”, not “up”
o High component failure rates

e |nexpensive commodity components fail all the time
o “Modest” number of huge files

e Multi-gigabyte files are common, if not encouraged
o Files are write-once, mostly appended to

e Perhaps concurrently

o Large streaming reads over random access

e High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)




GFS: Design Decisions

o Files stored as chunks
e Fixed size (64MB)

o Reliability through replication
e Each chunk replicated across 3+ chunkservers

o Single master to coordinate access, keep metadata
e Simple centralized management

o No data caching

e Little benefit due to large datasets, streaming reads
o Simplify the API

e Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)




From GFS to HDFS

o Terminology differences:

e GFS master = Hadoop namenode

e GFS chunkservers = Hadoop datanodes
o Differences:

e Different consistency model for file appends
e Implementation

e Performance

For the most part, we’ll use Hadoop terminology...
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Hadoop Distributed File System

o Files split into 64MB blocks

Namenode

o Blocks replicated across several
datanodes (usually 3)

o Single namenode stores metadata
(file names, block locations, etc)

o Optimized for large files,
sequential reads

o Files are append-only

Datanodes



Namenode Responsibilities

o Managing the file system namespace:

e Holds file/directory structure, metadata, file-to-block mapping,
access permissions, etc.

o Coordinating file operations:

e Directs clients to datanodes for reads and writes
e No data is moved through the namenode

o Maintaining overall health:

e Periodic communication with the datanodes
e Block re-replication and rebalancing
e Garbage collection



HDFS Architecture

HDFS namenode

Application

A 4

File namespace

HDFS Client <
A

[foo/bar
block 3df2

HDFS datanode

Linux file system

Sl

Adapted from (Ghemawat et al., SOSP 2003)

HDFS datanode

Linux file system

Sl




Putting everything together...

namenode job submission node

namenode daemon jobtracker

-
-
- i N

tasktracker tasktracker tasktracker

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system




Typical Hadoop Cluster

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-



