

Introduction to Cloud, MapReduce, Hadoop, HDFS

The Big Data era

THINKH DHMOKO

The 3 (or more) Vs

Grawls 20B web pages a day (2012) Search index is 100+ PB (5/2014) Bigtable serves 2+ EB, 600M QPS (5/2014)

400B pages, 10+ PB (2/2014)

Hadoop: 365 PB, 330K

nodes (6/2014)

150 PB on 50k+ servers running 15k apps (6/2011)

Hadoop: 10K nodes, 150K cores, 150 PB (4/2014)

300 PB data in Hive + 600 TB/day (4/2014)

amazon

web services™

facebook.

S3: 2T objects, 1.1M request/second (4/2013) LHC: ~15 PB a year

LSST: 6-10 PB a year (~ 2020)

SKA: 0.3 – 1.5 EB per year (~2020)

How much data?

1 EB (Exabyte= 10^{18} bytes) = 1000 PB (Petabyte= 10^{15} bytes) Κίνηση δεδομένων κινητής τηλεφωνίας στις ΗΠΑ για το 2010

1.2 ZB (Zettabyte) = 1200 EB Σύνολο ψηφιακών δεδομένων το 2010

35 ZB (Zettabyte = 10^{21} bytes) Εκτίμηση για σύνολο ψηφιακών δεδομένων το 2020

No data like more data!

s/knowledge/data/g;

How do we get here if we're not Google?

How it all started...

Τι κάνει η Google;

IN THE PROPERTY OF THE PARTY OF

- 1. crawling
- 2. indexing
- 3. \$\$\$

Πώς δεικτοδοτείς το διαδίκτυο;

- ο Πάνω από 1 τρις μοναδικά URLs
- ο Δισεκατομμύρια μοναδικές ιστοσελίδες
- Exabytes κειμένου

slide from Jeff Dean, Google

Ένα Google Datacenter

- Εκατομμύρια cores
- ο ~20k κόμβοι για ένα tasks

What is cloud computing?

Just a buzzword?

- Before clouds...
 - P2P computing
 - Grids
 - HPC
 - ...
- Cloud computing means many different things:
 - Large-data processing
 - Rebranding of web 2.0
 - Utility computing
 - Everything as a service

Rebranding of web 2.0

- Rich, interactive web applications
 - Clouds refer to the servers that run them
 - AJAX as the de facto standard (for better or worse)
 - Examples: Facebook, YouTube, Gmail, ...
- "The network is the computer": take two
 - User data is stored "in the clouds"
 - Rise of the netbook, smartphones, etc.
 - Browser is the OS

- What?
 - Computing resources as a metered service ("pay as you go")
 - Ability to dynamically provision virtual machines
- Why?
 - Cost: capital vs. operating expenses
 - Scalability: "infinite" capacity
 - Elasticity: scale up or down on demand
- Does it make sense?
 - Benefits to cloud users
 - Business case for cloud providers

I think there is a world market for about five computers.

Enabling Technology: Virtualization

App App App
Operating System
Hardware

Traditional Stack

App App App

OS OS OS

Hypervisor

Hardware

Virtualized Stack

Software as a service

Everything is a service

Platform as a service

Infrastructure as a service

Cloud technology enabler

Hardware provider

Everything as a Service

- Utility computing = Infrastructure as a Service (laaS)
 - Why buy machines when you can rent cycles?
 - Examples: Amazon's EC2, Rackspace
- Platform as a Service (PaaS)
 - Give me nice API and take care of the maintenance, upgrades, ...
 - Example: Google App Engine
- Software as a Service (SaaS)
 - Just run it for me!
 - Example: Gmail, Salesforce

How do we scale up?

Divide and Conquer

Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

What is the common theme of all of these problems?

Synchronization!

- Parallelization problems arise from:
 - Communication between workers (e.g., to exchange state)
 - Access to shared resources (e.g., data)
- Thus, we need a synchronization mechanism

Managing Multiple Workers

- Difficult because
 - We don't know the order in which workers run
 - We don't know when workers interrupt each other
 - We don't know the order in which workers access shared data
- Thus, we need:
 - Semaphores (lock, unlock)
 - Conditional variables (wait, notify, broadcast)
 - Barriers
- Still, lots of problems:
 - Deadlock, livelock, race conditions...
 - Dining philosophers, sleeping barbers, cigarette smokers...
- Moral of the story: be careful!

Current Tools

- Programming models
 - Shared memory (pthreads)
 - Message passing (MPI)
- Design Patterns
 - Master-slaves
 - Producer-consumer flows
 - Shared work queues

- It's all about the right level of abstraction
 - The von Neumann architecture has served us well, but is no longer appropriate for the multi-core/cluster environment
- Hide system-level details from the developers
 - No more race conditions, lock contention, etc.
- Separating the what from how
 - Developer specifies the computation that needs to be performed
 - Execution framework ("runtime") handles actual execution

The datacenter is the computer!

MapReduce

- Programming model for expressing distributed computations at a massive scale
- Execution framework for organizing and performing such computations
- Open-source implementation called Hadoop

Typical Large-Data Problem

- Iterate over a large number of records
- Map xtract something of interest from each
 - Shuffle and sort intermediate results
 - Aggregate intermediate resultaduce
 - Generate final output

Key idea: provide a functional abstraction for these two operations

Cheap nodes fail, especially if you have many

- Mean time between failures for 1 node = 3 years
- Mean time between failures for 1000 nodes = 1 day
- Solution: Build fault-tolerance into system

Commodity network = low bandwidth

Solution: Push computation to the data

3. Programming distributed systems is hard

Solution: Data-parallel programming model: users write "map" & "reduce" functions, system distributes work and handles faults

MapReduce

• Programmers specify two functions:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k'', v'' \rangle^*
```

- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

What's "everything else"?

MapReduce "Runtime"

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed FS

MapReduce

• Programmers specify two functions:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k'', v'' \rangle^*
```

- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify:

```
partition (k', number of partitions) → partition for k'
```

- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations
 combine (k', v') → <k', v'>*
- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic

TANEDIZ THINGS

Two more details...

- Barrier between map and reduce phases
 - But we can begin copying intermediate data earlier
- Keys arrive at each reducer in sorted order
 - No enforced ordering across reducers

MapReduce Execution

Single master controls job execution on multiple slaves

- Mappers preferentially placed on same node or same rack as their input block
 - Minimizes network usage

- Mappers save outputs to local disk before serving them to reducers
 - Allows recovery if a reducer crashes
 - Allows having more reducers than nodes

"Hello World": Word Count

Emit(term, value);

```
Map(String docid, String text):
    for each word w in text:
        Emit(w, 1);

Reduce(String term, Iterator<Int> values):
    int sum = 0;
    for each v in values:
        sum += v;
```


Word Count Execution

Input Map & Combine Shuffle & Sort Reduce Output

- Input: (lineNumber, line) records
- Output: lines matching a given pattern

o Map:

```
if(line matches pattern):
    output(line)
```

- Reduce: identify function
 - Alternative: no reducer (map-only job)

Sort Example

- Input: (key, value) records
- Output: same records, sorted by key

- Map: identity function
- Reduce: identify function

• Trick: Pick partitioning function h such that k₁<k₂ => h(k₁)<h(k₂)

Inverted Index Example

- Input: (filename, text) records
- Output: list of files containing each word

o Map:

```
foreach word in text.split():
   output(word, filename)
```

- Combine: uniquify filenames for each word
- o Reduce:

```
def reduce(word, filenames):
    output(word, sort(filenames))
```


Most Popular Words Example

- Input: (filename, text) records
- Output: top 100 words occurring in the most files

- Two-stage solution:
 - Job 1:
 - Create inverted index, giving (word, list(file)) records
 - Job 2:
 - Map each (word, list(file)) to (count, word)
 - Sort these records by count as in sort job
- Optimizations:
 - Map to (word, 1) instead of (word, file) in Job 1
 - Count files in job 1's reducer rather than job 2's mapper
 - Estimate count distribution in advance and drop rare words

Fault Tolerance in MapReduce

- 1. If a task crashes:
 - Retry on another node
 - OK for a map because it has no dependencies
 - OK for reduce because map outputs are on disk
 - If the same task fails repeatedly, fail the job or ignore that input block (user-controlled)

Note: For these fault tolerance features to work, your map and reduce tasks must be side-effect-free

Fault Tolerance in MapReduce

2. If a node crashes:

- Re-launch its current tasks on other nodes
- Re-run any maps the node previously ran
 - Necessary because their output files were lost along with the crashed node

ON STANFINITHMONE PARTY OF THE PARTY OF THE

Fault Tolerance in MapReduce

- 3. If a task is going slowly (straggler):
 - Launch second copy of task on another node ("speculative execution")
 - Take the output of whichever copy finishes first, and kill the other

- Surprisingly important in large clusters
 - Stragglers occur frequently due to failing hardware, software bugs, misconfiguration, etc
 - Single straggler may noticeably slow down a job

Takeaways

- By providing a data-parallel programming model,
 MapReduce can control job execution in useful ways:
 - Automatic division of job into tasks
 - Automatic placement of computation near data
 - Automatic load balancing
 - Recovery from failures & stragglers

 User focuses on application, not on complexities of distributed computing

Hadoop Components

Distributed file system (HDFS)

- Single namespace for entire cluster
- Replicates data 3x for fault-tolerance

MapReduce framework

- Executes user jobs specified as "map" and "reduce" functions
- Manages work distribution & fault-tolerance

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, now an Apache project
 - Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix,
 ...
 - The de facto big data processing platform
 - Large and expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.

Distributed File System

- Don't move data to workers... move workers to the data!
 - Store data on the local disks of nodes in the cluster
 - Start up the workers on the node that has the data local
- Why?
 - Not enough RAM to hold all the data in memory
 - Disk access is slow, but disk throughput is reasonable
- A distributed file system is the answer
 - GFS (Google File System) for Google's MapReduce
 - HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

- Commodity hardware over "exotic" hardware
 - Scale "out", not "up"
- High component failure rates
 - Inexpensive commodity components fail all the time
- "Modest" number of huge files
 - Multi-gigabyte files are common, if not encouraged
- Files are write-once, mostly appended to
 - Perhaps concurrently
- Large streaming reads over random access
 - High sustained throughput over low latency

GFS: Design Decisions

- Files stored as chunks
 - Fixed size (64MB)
- Reliability through replication
 - Each chunk replicated across 3+ chunkservers
- Single master to coordinate access, keep metadata
 - Simple centralized management
- No data caching
 - Little benefit due to large datasets, streaming reads
- Simplify the API
 - Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

- Terminology differences:
 - GFS master = Hadoop namenode
 - GFS chunkservers = Hadoop datanodes
- o Differences:
 - Different consistency model for file appends
 - Implementation
 - Performance

For the most part, we'll use Hadoop terminology...

Hadoop Distributed File System

- Files split into 64MB blocks
- Blocks replicated across several datanodes (usually 3)
- Single namenode stores metadata (file names, block locations, etc)
- Optimized for large files, sequential reads
- Files are append-only

Datanodes

Namenode Responsibilities

- Managing the file system namespace:
 - Holds file/directory structure, metadata, file-to-block mapping, access permissions, etc.
- Coordinating file operations:
 - Directs clients to datanodes for reads and writes
 - No data is moved through the namenode
- Maintaining overall health:
 - Periodic communication with the datanodes
 - Block re-replication and rebalancing
 - Garbage collection

HDFS Architecture

Putting everything together...

Typical Hadoop Cluster

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-