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The Big Data era 



The 3 (or more) Vs 



How much data? 

Hadoop: 10K nodes, 

150K cores, 150 PB 

(4/2014) 

Processes 20 PB a day (2008) 

Crawls 20B web pages a day (2012) 

Search index is 100+ PB (5/2014) 

Bigtable serves 2+ EB, 600M QPS 

(5/2014) 

300 PB data in Hive +  

600 TB/day (4/2014) 

400B pages, 

10+ PB 

(2/2014) 

LHC: ~15 PB a year 

 

LSST: 6-10 PB a year  

(~2020) 640K ought to be 

enough for 

anybody. 

150 PB on 50k+ servers  

running 15k apps (6/2011) 

S3: 2T objects, 1.1M 

request/second (4/2013) 

SKA: 0.3 – 1.5 EB  

per year (~2020) 

Hadoop: 365 PB, 330K 

nodes (6/2014) 



 

1 EB (Exabyte=1018bytes) = 1000 PB (Petabyte=1015bytes) 

Κίνηση δεδομένων κινητής τηλεφωνίας στις ΗΠΑ για το 2010 

1.2 ZB (Zettabyte) = 1200 EB  
Σύνολο ψηφιακών δεδομένων το 2010 

35 ZB (Zettabyte = 1021 bytes)  
Εκτίμηση για σύνολο ψηφιακών 
δεδομένων το 2020 



No data like more data! 

(Banko and Brill, ACL 2001) 

(Brants et al., EMNLP 2007) 

s/knowledge/data/g; 

How do we get here if we’re not Google? 



Emergence of the 4th 

Paradigm 

Data-intensive e-Science Maximilien Brice, © CERN 

Science 



Engineering 
The unreasonable effectiveness of data 

Count and normalize! 

Source: Wikipedia (Three Gorges Dam) 



Commerce 

Know thy customers 

Data  Insights  Competitive advantages  

Source: Wikiedia (Shinjuku, Tokyo) 



How it all started… 

 



 



Τι κάνει η Google; 

1. crawling 

2. indexing 

3. $$$ 



Πώς δεικτοδοτείς το διαδίκτυο; 

 Πάνω από 1 τρις μοναδικά URLs  

 Δισεκατομμύρια μοναδικές ιστοσελίδες 

 Exabytes κειμένου 



 



Ένα Google Datacenter 



...κι από μέσα 

 

 

 

 

 

 

 

 

 Εκατομμύρια cores 

 ~20k κόμβοι για ένα tasks 



What is cloud computing? 



Just a buzzword? 

 Before clouds… 

 P2P computing 

 Grids 

 HPC 

 … 

 Cloud computing means many different things: 

 Large-data processing 

 Rebranding of web 2.0 

 Utility computing 

 Everything as a service 



Rebranding of web 2.0 

 Rich, interactive web applications 

 Clouds refer to the servers that run them 

 AJAX as the de facto standard (for better or worse) 

 Examples: Facebook, YouTube, Gmail, … 

 “The network is the computer”: take two 

 User data is stored “in the clouds” 

 Rise of the netbook, smartphones, etc. 

 Browser is the OS 

 



Utility Computing 

 What? 

 Computing resources as a metered service (“pay as you go”) 

 Ability to dynamically provision virtual machines 

 Why? 

 Cost: capital vs. operating expenses 

 Scalability: “infinite” capacity 

 Elasticity: scale up or down on demand 

 Does it make sense? 

 Benefits to cloud users 

 Business case for cloud providers 

 

I think there is a world 

market for about five 

computers. 



Enabling Technology: Virtualization 

Hardware 

Operating System 

App App App 

Traditional Stack 

Hardware 

OS 

App App App 

Hypervisor 

OS OS 

Virtualized Stack 



Cloud computing market 

Hardware provider 

Cloud technology enabler 

Infrastructure as a service 

Platform as a service 

Software as a service Everything is a service 



Everything as a Service 

 Utility computing = Infrastructure as a Service (IaaS) 

 Why buy machines when you can rent cycles? 

 Examples: Amazon’s EC2, Rackspace 

 Platform as a Service (PaaS) 

 Give me nice API and take care of the maintenance, upgrades, … 

 Example: Google App Engine 

 Software as a Service (SaaS) 

 Just run it for me! 

 Example: Gmail, Salesforce 

 



How do we scale up? 



Divide and Conquer 

“Work” 

w1 w2 w3 

r1 r2 r3 

“Result” 

“worker” “worker” “worker” 

Partition 

Combine 



Parallelization Challenges 

 How do we assign work units to workers? 

 What if we have more work units than workers? 

 What if workers need to share partial results? 

 How do we aggregate partial results? 

 How do we know all the workers have finished? 

 What if workers die? 

What is the common theme of all of these problems? 



Synchronization! 

 Parallelization problems arise from: 

 Communication between workers (e.g., to exchange state) 

 Access to shared resources (e.g., data) 

 Thus, we need a synchronization mechanism 

 



Managing Multiple Workers 

 Difficult because 

 We don’t know the order in which workers run 

 We don’t know when workers interrupt each other 

 We don’t know the order in which workers access shared data 

 Thus, we need: 

 Semaphores (lock, unlock) 

 Conditional variables (wait, notify, broadcast) 

 Barriers 

 Still, lots of problems: 

 Deadlock, livelock, race conditions... 

 Dining philosophers, sleeping barbers, cigarette smokers... 

 Moral of the story: be careful! 



Current Tools 

 Programming models 

 Shared memory (pthreads) 

 Message passing (MPI) 

 Design Patterns 

 Master-slaves 

 Producer-consumer flows 

 Shared work queues 

 

Message Passing 

P1 P2 P3 P4 P5 

Shared Memory 

P1 P2 P3 P4 P5 

M
e

m
o

ry
 

master 

slaves 

producer consumer 

producer consumer 

work queue 



What’s the point? 

 It’s all about the right level of abstraction 

 The von Neumann architecture has served us well, but is no longer 

appropriate for the multi-core/cluster environment 

 Hide system-level details from the developers 

 No more race conditions, lock contention, etc. 

 Separating the what from how 

 Developer specifies the computation that needs to be performed 

 Execution framework (“runtime”) handles actual execution 

 

The datacenter is the computer! 



MapReduce 



What is MapReduce? 

 Programming model for expressing distributed 

computations at a massive scale 

 Execution framework for organizing and performing such 

computations 

 Open-source implementation called Hadoop 



Typical Large-Data Problem 

 Iterate over a large number of records 

 Extract something of interest from each 

 Shuffle and sort intermediate results 

 Aggregate intermediate results 

 Generate final output 

Key idea: provide a functional abstraction for 

these two operations 

(Dean and Ghemawat, OSDI 2004) 



Challenges 

1. Cheap nodes fail, especially if you have many 

 Mean time between failures for 1 node = 3 years 

 Mean time between failures for 1000 nodes = 1 day 

 Solution: Build fault-tolerance into system 

 

2. Commodity network = low bandwidth 

 Solution: Push computation to the data 

 

3. Programming distributed systems is hard 

 Solution: Data-parallel programming model: users write “map” & 

“reduce” functions, system distributes work and handles faults 



MapReduce 

 Programmers specify two functions: 

map (k, v) → <k’, v’>* 

reduce (k’, v’) → <k’’, v’’>* 

 All values with the same key are sent to the same reducer 

 The execution framework handles everything else… 

What’s “everything else”? 



map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 



MapReduce “Runtime” 

 Handles scheduling 

 Assigns workers to map and reduce tasks 

 Handles “data distribution” 

 Moves processes to data 

 Handles synchronization 

 Gathers, sorts, and shuffles intermediate data 

 Handles errors and faults 

 Detects worker failures and restarts 

 Everything happens on top of a distributed FS 



MapReduce 

 Programmers specify two functions: 

map (k, v) → <k’, v’>* 

reduce (k’, v’) → <k’’, v’’>* 

 All values with the same key are reduced together 

 The execution framework handles everything else… 

 Not quite…usually, programmers also specify: 

partition (k’, number of partitions) → partition for k’ 

 Often a simple hash of the key, e.g., hash(k’) mod n 

 Divides up key space for parallel reduce operations 

combine (k’, v’) → <k’, v’>* 

 Mini-reducers that run in memory after the map phase 

 Used as an optimization to reduce network traffic 



combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 



Two more details… 

 Barrier between map and reduce phases 

 But we can begin copying intermediate data earlier 

 Keys arrive at each reducer in sorted order 

 No enforced ordering across reducers 



MapReduce Execution 

 Single master controls job execution on multiple slaves 

 

 Mappers preferentially placed on same node or same rack 

as their input block 

 Minimizes network usage 

 

 Mappers save outputs to local disk before serving them to 

reducers 

 Allows recovery if a reducer crashes 

 Allows having more reducers than nodes 

 



split 0 

split 1 

split 2 

split 3 

split 4 

worker 

worker 

worker 

worker 

worker 

Master 

User 

Program 

output 

file 0 

output 

file 1 

(1) submit 

(2) schedule map (2) schedule reduce 

(3) read 
(4) local write 

(5) remote read 
(6) write 

Input 

files 

Map 

phase 

Intermediate files 

(on local disk) 

Reduce 

phase 

Output 

files 

Adapted from (Dean and Ghemawat, OSDI 2004) 



“Hello World”: Word Count 

Map(String docid, String text): 

     for each word w in text: 

          Emit(w, 1); 

 

Reduce(String term, Iterator<Int> values): 

     int sum = 0; 

     for each v in values: 

          sum += v; 

          Emit(term, value); 

 



Word Count Execution 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 

fox, 1 

quick, 1 

the, 1 

fox, 1 

the, 1 

how, 1 

now, 1 

brown, 1 

ate, 1 

mouse, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 



Word Count with Combiner 

Input Map & Combine Shuffle & Sort Reduce Output 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 

fox, 1 

quick, 1 

the, 2 

fox, 1 

how, 1 

now, 1 

brown, 1 

ate, 1 

mouse, 1 

cow, 1 



Search Example 

 Input: (lineNumber, line) records 

 Output: lines matching a given pattern 

 

 Map:  

    if(line matches pattern): 
        output(line) 

 

 Reduce: identify function 

 Alternative: no reducer (map-only job) 



pig 

sheep 

yak 

zebra 

aardvark 

ant 

bee 

cow 

elephant 

Sort Example 

 Input: (key, value) records 

 Output: same records, sorted by key 

 

 Map: identity function 

 Reduce: identify function 

 

 Trick: Pick partitioning 

function h such that 

k1<k2 => h(k1)<h(k2) 

Map 

Map 

Map 

Reduce 

Reduce 

ant, bee 

zebra 

aardvark, 

elephant 

cow 

pig 

sheep, yak 

[A-M] 

[N-Z] 



Inverted Index Example 

 Input: (filename, text) records 

 Output: list of files containing each word 

 

 Map:  

      foreach word in text.split(): 
         output(word, filename) 

 

 Combine: uniquify filenames for each word 

 Reduce: 
  def reduce(word, filenames):   
      output(word, sort(filenames)) 

 



Inverted Index Example 

 

to be or 
not to be afraid, (12th.txt) 

be, (12th.txt, hamlet.txt) 
greatness, (12th.txt) 

not, (12th.txt, hamlet.txt) 
of, (12th.txt) 

or, (hamlet.txt) 
to, (hamlet.txt) 

hamlet.txt 

be not 
afraid of 
greatness 

12th.txt 

to, hamlet.txt 
be, hamlet.txt 
or, hamlet.txt 
not, hamlet.txt 
 
 

be, 12th.txt 
not, 12th.txt 
afraid, 12th.txt 
of, 12th.txt 
greatness, 12th.txt 
 
 



Most Popular Words Example 

 Input: (filename, text) records 

 Output: top 100 words occurring in the most files 

 

 Two-stage solution: 

 Job 1: 

• Create inverted index, giving (word, list(file)) records 

 Job 2: 

• Map each (word, list(file)) to (count, word) 

• Sort these records by count as in sort job 

 

 Optimizations: 

 Map to (word, 1) instead of (word, file) in Job 1 

 Count files in job 1’s reducer rather than job 2’s mapper 

 Estimate count distribution in advance and drop rare words 



Fault Tolerance in MapReduce 

1. If a task crashes: 

 Retry on another node 

• OK for a map because it has no dependencies 

• OK for reduce because map outputs are on disk 

 If the same task fails repeatedly, fail the job or ignore that 

input block (user-controlled) 

 Note: For these fault tolerance features to work, your 

map and reduce tasks must be side-effect-free 



Fault Tolerance in MapReduce 

2. If a node crashes: 

 Re-launch its current tasks on other nodes 

 Re-run any maps the node previously ran 

• Necessary because their output files were lost along with 

the crashed node 



Fault Tolerance in MapReduce 

3. If a task is going slowly (straggler): 

 Launch second copy of task on another node (“speculative 

execution”) 

 Take the output of whichever copy finishes first, and kill the 

other 

 

 Surprisingly important in large clusters 

 Stragglers occur frequently due to failing hardware, software 

bugs, misconfiguration, etc 

 Single straggler may noticeably slow down a job 



Takeaways 

 By providing a data-parallel programming model, 

MapReduce can control job execution in useful ways: 

 Automatic division of job into tasks 

 Automatic placement of computation near data 

 Automatic load balancing 

 Recovery from failures & stragglers 

 

 User focuses on application, not on complexities of 

distributed computing 



Hadoop Components 

 Distributed file system (HDFS) 

 Single namespace for entire cluster 

 Replicates data 3x for fault-tolerance 

 

 MapReduce framework 

 Executes user jobs specified as “map” and “reduce” 

functions 

 Manages work distribution & fault-tolerance 



MapReduce Implementations 

 Google has a proprietary implementation in C++ 

 Bindings in Java, Python 

 Hadoop is an open-source implementation in Java 

 Development led by Yahoo, now an Apache project 

 Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, 

… 

 The de facto big data processing platform 

 Large and expanding software ecosystem 

 Lots of custom research implementations 

 For GPUs, cell processors, etc. 

 



Distributed File System 

 Don’t move data to workers… move workers to the data! 

 Store data on the local disks of nodes in the cluster 

 Start up the workers on the node that has the data local 

 Why? 

 Not enough RAM to hold all the data in memory 

 Disk access is slow, but disk throughput is reasonable 

 A distributed file system is the answer 

 GFS (Google File System) for Google’s MapReduce 

 HDFS (Hadoop Distributed File System) for Hadoop 



GFS: Assumptions 

 Commodity hardware over “exotic” hardware 

 Scale “out”, not “up” 

 High component failure rates 

 Inexpensive commodity components fail all the time 

 “Modest” number of huge files 

 Multi-gigabyte files are common, if not encouraged 

 Files are write-once, mostly appended to 

 Perhaps concurrently 

 Large streaming reads over random access 

 High sustained throughput over low latency 

GFS slides adapted from material by (Ghemawat et al., SOSP 2003) 



GFS: Design Decisions 

 Files stored as chunks 

 Fixed size (64MB) 

 Reliability through replication 

 Each chunk replicated across 3+ chunkservers 

 Single master to coordinate access, keep metadata 

 Simple centralized management 

 No data caching 

 Little benefit due to large datasets, streaming reads 

 Simplify the API 

 Push some of the issues onto the client (e.g., data layout) 

HDFS = GFS clone (same basic ideas) 



From GFS to HDFS 

 Terminology differences: 

 GFS master = Hadoop namenode 

 GFS chunkservers = Hadoop datanodes 

 Differences: 

 Different consistency model for file appends 

 Implementation 

 Performance 

For the most part, we’ll use Hadoop terminology… 



Hadoop Distributed File System 

 Files split into 64MB blocks 

 Blocks replicated across several 

datanodes (usually 3) 

 Single namenode stores metadata 

(file names, block locations, etc) 

 Optimized for large files, 

sequential reads 

 Files are append-only 

Namenode 

Datanodes 

1 

2 

3 

4 

1 

2 

4 

2 

1 

3 

1 

4 

3 

3 

2 

4 

File1 



Namenode Responsibilities 

 Managing the file system namespace: 

 Holds file/directory structure, metadata, file-to-block mapping, 

access permissions, etc. 

 Coordinating file operations: 

 Directs clients to datanodes for reads and writes 

 No data is moved through the namenode 

 Maintaining overall health: 

 Periodic communication with the datanodes 

 Block re-replication and rebalancing 

 Garbage collection 



Adapted from (Ghemawat et al., SOSP 2003) 

(file name, block id) 

(block id, block location) 

instructions to datanode 

datanode state 
(block id, byte range) 

block data 

HDFS namenode 

HDFS datanode 

Linux file system 

… 

HDFS datanode 

Linux file system 

… 

File namespace 

/foo/bar 

block 3df2 

Application 

HDFS Client 

HDFS Architecture 

 



Putting everything together… 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

datanode daemon 

Linux file system 

… 

tasktracker 

slave node 

namenode 

namenode daemon 

job submission node 

jobtracker 



Typical Hadoop Cluster 

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-

2009.pdf 


