Stream Processing

Analytics

Realtime Analytics Alerts 6
-tir i ;

! :]
Interactive Analytics ‘Queries .

@F®
HEeE@®WP

. Predictive Analytics Visualizations Q

Batch Analytics APIs ﬁg

Systems

{ CollectData =) Analyze & Make Decisions =) Communicate

A DATABASE SYSTEM

N =S RN N

PGMS b s A -~ USERS
g SOFTWARE !

The Stream Model

e The system cannot store the entire stream
o Google queries, mouse clicks, sensor measurements

e Input tuples enter at a rapid rate, at one or more input ports
e Low latency (ms) requirements (Real-time processing)

The 8 Requirements of Real-Time Stream Processing
(Stonebraker 2005)

Keep the data moving

Query using SQL on streams

Handle stream imperfections (out-of-order data)
Generate predictable outcomes

Integrate stored and streaming data

Guarantee data safety and availability

Partition and scale applications automatically
Process and respond instantaneously

©®NO O LN~

1. Keep the data moving

e Process messages ‘in-stream’
o No requirement to store them to perform any operation or sequence of operations.

e Push model

2. Query using SQL on streams

e Historically, general purpose languages (C++ or Java)
o long development cycles
o high maintenance costs.

In contrast, it is very much desirable to process moving real-time data using a
high-level language such as SQL.

3. Handle stream imperfections (out-of-order data)

The third requirement is to have built-in mechanisms to provide resiliency against
stream ‘imperfections’ including missing and out-of-order data which are
commonly present in real-world data streams.

4. Generate predictable outcomes

Time series data must be processed in a predictable manner to ensure the results
of processing are deterministic and repeatable.

5. Integrate stored and streaming data

The fifth requirement is to have the capability to efficiently store, modify, and
access state information, and combine it with live streaming data. For seamless
integration, the system should use a uniform language when dealing with either

type of data.

Lambda Architecture!

6. Guarantee data safety and availability

The sixth requirement is to ensure that the applications are up and available, and
the integrity of the data maintained at all times, despite failures.

/. Partition and scale applications automatically

Distributed operation is becoming increasingly important given the favourable
price-performance characteristics of low-cost commodity clusters. As such, it
should be possible to split an application over multiple machines for scalability
(as the volume of input streams or the complexity of processing increases) without
the developer having to write low-level code.

8. Process and respond instantaneously

The eigth requirement is that a stream processing engine must have a
highly-optimized, minimal overhead execution engine to deliver real-time
response for high-volume applications.

How do we make critical calculations about the stream using a limited amount of
(secondary) memory?

Ephemeral

Store APls

Apps

Message
Queue

Data Stream Processor

isualizations

Sensors

Permanent

Store Alerts

Devices

Applications (1)

= Trending Searches Q, Explore topics

M i n i n g q u e ry DAILY SEARCH TRENL 3 REALTIME SEARCH TRENDS United States ¥
S~ <
streams

Past 24 hours All categories v @
Google wants to know 1 Detroit * Industry + US Farathane + Auburn Hills « Michigan \,,_/\
What q uerles are more Authorities battle Auburn Hills fire at plastics plant The Detroit News * 2 hours ago Past 24h
frequent today than
yesterday 2 Nolan Arenado * Colorado Rockies § .
Nolan Arenado, Rockies finalizing eight-year, $260M extension to make him... CBSSports.com * 1 hour ... Past 24h
3 Middle East - Pakistan * India Iran + Saudi Arabia * Israel - Wester... _f\
Cherrypicking in West Asia The Tribune * 17 hours ago Past 24h
4 Baron Corbin * Roman Reigns - WWE Raw _/\r/\

Baron Corbin: For Roman's Sake, | Hope Our Paths Don't Cross Mandatory * 17 hours ago Past 24h

Applications (2)

e Mining click streams

o Google Analytics wants to know if a page is getting an unusual number of hits in the past hour

Create Shortcut 8574

Overview

Right now

14

active users on site

M DESKTOP M MOBILE

Top Referrals:

Source Active Users J
1. analytics.google.com 1
Top Social Traffic:
Source Active Users +

There is no data for this view.

Top Keywords:

Keyword Active Users ¥

1. (not provided) 10

Pageviews
Per minute
—
—
—
= =
j—
—_
— o — — —
— — —
— —_— — —
— —
-26 min — -21 min 18 min — 11 mir- 5 min i -30 sec
Top Active Pages:
Active Page Active Users
1. /home 64.29%
2. /Google+Redesign/Apparel/Android+Tone+Hoodie+Black 7.14%
3. /Google+Redesign/Apparel/Mens/Mens+T+Shirts 7.14%
4. /Google+Redesign/Office 7.14%
5. /Google+Redesign/Shop+by+Brand/Google 7.14%
6. /Google+Redesign/Shop+by+Brand/YouTube 7.14%

Top Locations:

Applications (3)

e Mining social network news feeds

e Sensor networks

o Many sensors feeding into a central controller
e Telephone call records
e |P packets monitored at a switch

o Gather information for optimal routing
o Detect-denial-of-service attacks

United States trends - crange

#TMobileTuesdays
20.4K Tweets

Detective Pikachu
New Detective Pikachu trailer finally reveals
Mewtwo in action

Arenado
16.4K Tweets

Mewtwo
11.8K Tweets

#TuesdayThoughts
85.4K Tweets

Rockies
14.8K Tweets

John Ross
1,340 Tweets

Ilvanka
68.1K Tweets

Emma Thompson

Emma Thompson says she can't work with
embattied filmmaker John Lasseter in light of
sexual misconduct allegations

Cohen
163K Tweets

Data stream problems

Sampling data from a stream
Queries over sliding windows
Filtering a data stream
Counting distinct elements
Finding frequent elements

We need algorithms + systems to tackle such problems!

Reservoir Sampling

Ensure each item is in sample with equal probability B/n

Store all the first B elements of the stream

Suppose we have seen n-1 elements and now the n-th element arrives (n > B)
With probability B/n pick the n-th element, else discard it

If we pick the n-th element, then it replaces one of the B elements in the
sample, picked at random

2, 5|7 1] 4

a s~ w0DdN -

Sliding Windows

Queries are about a window of length N — the N most recent elements received.

Interesting case: N is so large it cannot be stored in memory.

qwertyuiopasdighjklzxcvbnm

qwertyuioplasdfghjklzxcvbnm

gwertyuiopagdighijlklzxcvbnm

qwertyuiopasfdighikKlzxcvbnm

Past Future E—

Counting elements over sliding windows

Problem: Given a stream of 0's and 1’s, answer queries of the form “how many
1’s in the last k bits?” where k < N.

e Obvious solution: store the most recent N bits.
o When new bit comes in, discard the N +1st bit.

e You can’t get an exact answer without storing the entire window.

e Real Problem: what if we cannot afford to store N bits?
o We have an loT device of limited memory and W = 1 billion

e But we're happy with an approximate answer.

Exponential Histograms (1)

Key ldea:

e Summarize blocks of stream with specific numbers of 1’s.
e Block sizes (number of 1's) increase exponentially as we go back in time

At least 1 of 2 of 2 of 1 of 2 of
size 16. Partially size 8 size 4 size2 size 1

beyond Ivindow. /\ /\ \

10010101100010110101010101010110{1010101010111/010101011101010001 0 11D0

A
v

N

Exponential Histograms (2)

e Each bitin the stream has a timestamp, starting 1, 2, ...

A bucket is a record consisting of:
o The timestamp of its end.
o The number of 1’s between its beginning and end.
o Constraint: number of 1’'s must be a power of 2.

e Either one or two buckets with the same power-of-2 number of 1’s.
e Buckets do not overlap in timestamps.

e Buckets are sorted by size.
o Earlier buckets are not smaller than later buckets.

e Buckets disappear when their end-time is > N time units in the past.

Example

100101011000101?]1010101010101ﬂd191010101011d0h010101

110101

obodlofibolib

0010101100010110kQ1010101010113‘010101010111)‘010101h10101b00!

o1]ddibf

001010110001011

0hQ10101Q1910113‘01Q101Q19111)‘010101h10101b001

01]oo1bl

010110001011

N{0101010101011D1010101010111

)1010101h10101b00

{011

ooliib]

010110001011

D

[0101010101011D1010101010111

)iO10101h10101b00

011

o0iblibi]

010110001011

D

1010101010101101010101010111

h{o1o101110101boofot1oo1bf 1bi]

Filtering data streams

e Each element of data stream is a tuple
e Given a list of keys S, determine which elements of stream have keys in S

e Obvious solution: store all keys S
o S may not fit in memory (e.g., millions of filters on the same stream)

Applications:

e Email spam filtering

o We know 1 billion “good” email addresses

o If an email comes from one of these, it is NOT spam
e Publish-subscribe

o People express interest in certain sets of keywords
o Determine whether each message matches a user’s interest

Bloom Filters

Create a bit array B of size n

Use k independent hash functions h1 ,...,hk

Initialize B to all O’s

Hash each element s in S using each function, and set B[hi (s)] = 1 for i =
1,..,k

e \When a stream element with key x arrives

o If B[hi (x)] =1 fori=1,..,k, then declare that xisin S
o Otherwise discard the element

e No false-negatives
o Isthe element in the set? — No/Maybe

Example

2 hash functions h1, h2 - .

Stream: {5, 4, 15, ...} O 1 2 3 4 5 6 7 8 9 10 11
e |Input: 5, h1(5) = 3, h2(5) = 11 - - -

e Input: 4, h1(15) =1, h2(15) = 8

I NN

001 2 3 45 6 78 9 10 11

Query: Is 2 in stream?

h1(2)=8 ,h2(2)=9 — NO!

Till now...

Streaming
Operator

)
"

Input Output

Need for systems that handle complex distributed streams
- Scalability
- Fault-tolerance

Deal with scalability

If resources are not enough...

X/

% Scale-Up: Get a bigger machine

> “Huge” machines not accessible to
everyone (-)

> Not easy to migrate a live application (-)

> Code remains as is (+)

Con 8fafulaﬁon S, N
i€ only took you

7/

% Scale-Out: Use more machines

> Commodity-hardware (+)

> Elasticity actions (+)

> Distributed Algorithm is required (-)

The Word Count Example

Count vs. Word

Therea theory which states that if 4 W cout
ever anyone discovers exactly what

the Universefislfor and why itfSfhere, WordCount :
it will instantiy disappear and=be >

replaced by something even more
bizarre and inexplicable. There @ 1
another theory which states th(E]his

has already happened.

there is theory which states that and it

Word

A naive implementation

1 defaultdict
2
3
4 def wordcount(inp
5 i Running Time (sec) vs. Data Size (MB) Memory (MB) vs. Data Size (MB)
6 400 1
7
8
9)
Data Size (MB) Data Size (MB)

The bigger the dataset, the more resources we need!

Scaling out

Input Splitting Mapping Shuffling Reducing Final result
Bear, 1 » Bear, 2
Deer, 1 » Bear, 1
Deer Bear River » Bear, 1
River, 1
Car, 1
Car, 1 » Car, 3 » Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River » Car Car River » Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 » Deer, 2 >
Deer, 1
Deer, 1 ;
Deer Car Bear » Car, 1
Bear, 1 River, 1 » River, 2
River, 1

Delivery guarantees in streams

At most once (fire and forget): the message is sent, but the sender doesn’t care if
it is received or lost

At least once: retransmission of a message will occur until an ack is received.

Exactly once: A message is received once and only once

Apache Flink é

Distributed processing engine for stateful computations over unbounded streams.

Applications are parallelized into tasks that are distributed and concurrently

executed in a cluster.

Exactly once processing

~

\

JobGraph

JobVertex
(©)

/“

Intermediate
Data Set

JobVertex
(8)

JobVertex
(D)

~

Intermediate Intermediate
Data Set Data Set

JobVertex
(A)

)

~

ExecutionGraph
A
4

2 Execution Execution
Execution Vertex eHag
Job Vertex D (0/2) D (1/2)

l 1
”~ 7~
Intermediate Intermediate
Result Result Partition Result Partition
4 t

= Execution Execution
Execution Vertex Vertex
Job Vertex B (0/2) B (1/2)

Intermediate
Result

. o
Intermediate
Result Partition

Intermediate
Result Partition

-

- 4 4

Intermediate [Intermediate Intermediate
Result Result Partition Result Partition

® f i \ 1

7 T
g Execution Execution
Execution Vertex Vertex
Job Vertex A(0/2) A(1/2)
\\

)
)

Architecture

(Worker) (Worker)

Task
Slot

Task
Slot

Task
Slot

Task
Slot

Task
Slot

Task
Slot

Flink Program

{ {

Task Status / /

{

Py \ StaUStnx / Cancel Tasks
Datafiow / / /
Optimizer / Client oo Statistics & l
atis!
Graph Builder tpales

h e rESUItS
(\..._._ ------- - _ \\\'
Datafiow graph [T — =
Submit jOb e ___ .
(send dataflow) Cancel T E

update job

(Master / YARN Application Master)

. DataStream<String> lines env.addSource (Siiica
FI I n k AP I new FlinkKafkaConsumer<>(..));

DataStream<:tEvent> events

lines.map((line) -> parse(line)); } Transformation

DataStream<Statistics> stats = events
.keyBy ("id")

.timeWindow (Time.seconds (10)) Transanation

.apply (new MyWindowAggregationFunction()):;
stats.addSink (new RcllingSink(path)); } Sink

Source Transformation Sink

Operator Operators Operator
/ £ N \
keyBy()/
Source map() window()/ Sink
\ ‘ y
Stream
{ J
|

Streaming Dataflow

Windows

e Tumbling
e Sliding
e Session

Tumbling Windows

Configurable size
Non-overlapping

user 1

user 2

user 3

A

i window 1 ; window 2 |, window 3 |, window 4 , window 5 ,

window size

Sliding windows

e Configurable size \ T ki3
e Configurable slide : ' : :
user 1 ®®
user 2 ® 000
user 3] X X e
I T 1 T
; : window 2 | windw 4 :
< T > | I I |
: /‘ | : ! :
] 1\ g
time

window size window slide

Session Windows

The window closes when A
a gap of inactivity :/vindowl1 | window 2 | | window 3 | wir:dov:/ 4
OCCUITS user1 | 1@ @ 9 000 000 O 1@
window 1 window 2 window 3 window 4
e Configurable user 2 ' 000 —00. o 000
incativity gap window 1 window 2 window 3
user 3 @, 000 00 O
session gap

time

Time in Flink

Event Producer Message Queue Flink Flink

Data Source Window Operator

@ Event @Ingestion @ Window
Time Time Processing
Time

env.setStreamTimeCharacteristic (TimeCharacteristic .ProcessingTime) ;

Event Time and Watermarks

e Event time can progress independently of processing time
o progress through weeks of event time with only a few seconds of processing

e \Watermarks

o part of the data stream and carry a timestamp t
o event time has reached time t in that stream
o no more elements from the stream with a timestamp t' <=t

Stream (in order) Stream (out of order)

| |] 1
» [[1e][w7ss] [ur] [o]s] [s]ir] mp mp [21] [is]" [22][12][17] [14] [12] [o]5] =

w(20) w(11) w(17) w(11)

/ Event

Watermark Watermark

A Event timestam
Event timestamp P

State Backends

(master) JOb
Manager
\vq:
b3
Task Task Task
(workers)
Manager Manager Manager

store state
snapshots

=

(snapshot store)

Spark Streaming

Data ingested from many
sources

Processed using complex
algorithms expressed with
high-level functions like map,
reduce, join and window.
Machine learning and graph
processing algorithms on data
streams

Flume

4)
J‘z [HDFs |
HDFS/S3 Sp Qr K . [Databases]
Stf eamin 9 [Dashboards]

Twitter

s

- J

&
’ Scala = e @
Java python”

Spark Spark _

DataFrame API

Spark Core

// Data Source A‘&I\\

i) HERSE @ @ {JSON}MHS& elasticsearc h.

sioreSOL.

https://spark.apache.org/docs/2.2.0/ml-guide.html
https://spark.apache.org/docs/2.2.0/graphx-programming-guide.html
https://spark.apache.org/docs/2.2.0/graphx-programming-guide.html

Resilient Distributed Datasets (RDD)

Immutable distributed collection of objects
Divided into logical partitions
Can be persisted in memory
How to create an RDD:

o Parallelize existing collection

o Reference dataset in an external storage system (e.g., HDFS)
e Transformations

o Lazy evaluation

e Actions
o Trigger actual computation

<<

Spark® Streaming

discretized stream processing

batches

records (RDDs)
000 P 'Receiver
batches

> 11 =
processed

with tasks

records processed in batches with short tasks
each batchis a RDD (partitioned dataset)

Discretized Streams

input data batches of
stream Spark input data

Streaming
DStream = Sequence of RDDs

RDD @ time 1 RDD @ time 2

DStream = = - datafrom | _ | datafrom

timeOto 1 time 1to 2 Tl

Spark
Engine

RDD @ time 3

data from

batches of
processed data

| |

time2to3 -

RDD @ time 4

data from

' time3to4

>

Computational Models

éFlink

-p

Kafka, RabbitMQ .

-

HODFS, JDBC .

Flink computation is fully pipelined by default

A B
— G
Snge 1 ' groupBy
-t
E(mm join
Stag union Stage

Spark RDDs break down the computation into
stages

Word Count in TCP sockets

// Create a DStream that will connect to hostname:port, like localhost:9999
JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", 9999);

// Split each line into words

JavaDStream<String> words = lines.flatMap(x -> Arrays.asList(x.split(" ")).iterator());

// Count each word in each batch

JavaPairDStream<String, Integer> pairs = words.mapToPair(s -> new Tuple2<>(s, 1));
JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey((il, i2) -> il + 1i2);

// Print the first ten elements of each RDD generated in this DStream to the console
wordCounts.print();

Sliding Windows

time 1
original
DStream
windowed
DStream .
window
at time 1

time 5

(0] ==t

window-based
operation

time 2 time 3 time 4

window
at time 3

window
attime 5

Window length and sliding interval must be multiples of the batch interval of the

source DStream

Fault-tolerance

e A streaming application must operate 24/7
o Resilient to failures

e Two types of data that are checkpointed:

o Metadata checkpointing - Saving of the information defining the streaming computation to
fault-tolerant storage

m Configuration - The configuration that was used to create the streaming application.

m DStream operations - The set of DStream operations that define the streaming
application.

m Incomplete batches - Batches whose jobs are queued but have not completed yet.

o Data checkpointing - Saving of the generated RDDs to reliable storage. This is necessary in
some stateful transformations that combine data across multiple batches.

Delivering Guarantees in Spark Streaming

Processing phases of Spark Streaming:

1. Receive data (depends on data source)
2. Do transformation (exactly once)

3. Push outputs. (at least once - depends on data source)

Other streaming frameworks

5 STORM §€E§fka®

@ samza

Use cases (1)

Event-driven applications: stateful, ingest events from 1/many streams and react
by triggering computations, state updates, or external actions.

e Fraud detection
e Anomaly detection
e Rule-base alerting
e Business process monitoring

Data Analytics: extract information and insight from raw data in real-time fashion

e Quality monitoring of networks
e Large-scale graph analysis

Use cases (2)

Data pipeline applications:

e Extract-transform-load (ETL) is a common approach to convert and move
data between storage systems.

e Data pipelines transform and enrich data and can move it from one storage
system to another.

e Continuous streaming mode instead of being periodically triggered.

e Real-time search index building in e-commerce

e Continuous ETL

Typical Application Architecture

| |
mEee] | @.. <=

. J \) L I

e

......

|| Y Y

collect log analyze

T

serve & store

Twitter Sentiment Analysis

- — X

.
Kafka Producer - % Eafka Kafka Consumer Spo I
> Pipeline

Streaming WAL WA :

Pre-Processing 06 6 8 4 sessee s sesseiee

Twitter Hosebird Client Twitter Topic \ Spark Streaming API Real-time Sentiment Analysis/
with Twitterdj Wrapper

Anomaly Detection

anomaly
detection
Kafka queues continuously)
FiraFosa : Spark metrics
» Streaming | dashboard

Spark

i TR : alerting
for detected = = system
anomalies

monitoring
probes

