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The Stream Model
● The system cannot store the entire stream

○ Google queries, mouse clicks, sensor measurements

● Input tuples enter at a rapid rate, at one or more input ports
● Low latency (ms) requirements (Real-time processing)



The 8 Requirements of Real-Time Stream Processing 
(Stonebraker 2005)
1. Keep the data moving
2. Query using SQL on streams
3. Handle stream imperfections (out-of-order data)
4. Generate predictable outcomes
5. Integrate stored and streaming data
6. Guarantee data safety and availability
7. Partition and scale applications automatically
8. Process and respond instantaneously



1. Keep the data moving
● Process messages ‘in-stream’

○ No requirement to store them to perform any operation or sequence of operations. 

● Push model



2. Query using SQL on streams
● Historically,  general purpose languages (C++ or Java) 

○ long development cycles 
○ high maintenance costs. 

In contrast, it is very much desirable to process moving real-time data using a 
high-level language such as SQL.



3. Handle stream imperfections (out-of-order data)
The third requirement is to have built-in mechanisms to provide resiliency against 
stream ‘imperfections’ including missing and out-of-order data which are 
commonly present in real-world data streams.

Time series data must be processed in a predictable manner to ensure the results 
of processing are deterministic and repeatable.

4. Generate predictable outcomes



5. Integrate stored and streaming data
The fifth requirement is to have the capability to efficiently store, modify, and 
access state information, and combine it with live streaming data. For seamless 
integration, the system should use a uniform language when dealing with either 
type of data.

Lambda Architecture!



6. Guarantee data safety and availability
The sixth requirement is to ensure that the applications are up and available, and 
the integrity of the data maintained at all times, despite failures.



7. Partition and scale applications automatically 
Distributed operation is becoming increasingly important given the favourable 
price-performance characteristics of low-cost commodity clusters. As such, it 
should be possible to split an application over multiple machines for scalability 
(as the volume of input streams or the complexity of processing increases) without 
the developer having to write low-level code.



8. Process and respond instantaneously 
The eigth requirement is that a stream processing engine must have a 
highly-optimized, minimal overhead execution engine to deliver real-time 
response for high-volume applications.



How do we make critical calculations about the stream using a limited amount of 
(secondary) memory?



Applications (1)

Mining query 
streams
Google wants to know 
what queries are more 
frequent today than 
yesterday



Applications (2)
● Mining click streams

○ Google Analytics wants to know if a page is getting an unusual number of hits in the past hour



Applications (3)
● Mining social network news feeds
● Sensor networks

○ Many sensors feeding into a central controller

● Telephone call records
● IP packets monitored at a switch

○ Gather information for optimal routing
○ Detect-denial-of-service attacks



Data stream problems
● Sampling data from a stream
● Queries over sliding windows
● Filtering a data stream
● Counting distinct elements
● Finding frequent elements

We need algorithms + systems to tackle such problems!



Reservoir Sampling
1. Ensure each item is in sample with equal probability B/n
2. Store all the first B elements of the stream
3. Suppose we have seen n-1 elements and now the n-th element arrives ( n > B)
4. With probability B/n pick the n-th element, else discard it
5. If we pick the n-th element, then it replaces one of the B elements in the 

sample, picked at random

B

2 5 7 1 4 ...

B

2 5 7 1 4 9



Sliding Windows
Queries are about a window of length N – the N most recent elements received.  

Interesting case: N is so large it cannot be stored in memory.



Counting elements over sliding windows
Problem:  Given a stream of 0’s and 1’s, answer queries of the form “how many 
1’s in the last k bits?” where k ≤ N.

● Obvious solution: store the most recent N bits.
○ When new bit comes in, discard the N +1st bit.

● You can’t get an exact answer without storing the entire window.
● Real Problem: what if we cannot afford to store N bits?

○ We have an IoT device of limited memory and W = 1 billion

● But we’re happy with an approximate answer.



Exponential Histograms (1)
Key Idea:

● Summarize blocks of stream with specific numbers of 1’s.  
● Block sizes (number of 1’s) increase exponentially as we go back in time



Exponential Histograms (2)
● Each bit in the stream has a timestamp, starting 1, 2, …
● A bucket is a record consisting of: 

○ The timestamp of its end.
○ The number of 1’s between its beginning and end.  
○ Constraint: number of 1’s must be a power of 2.

● Either one or two buckets with the same power-of-2 number of 1’s.  
● Buckets do not overlap in timestamps.  
● Buckets are sorted by size.  

○ Earlier buckets are not smaller than later buckets.  

● Buckets disappear when their end-time is > N time units in the past.



Example



Filtering data streams 
● Each element of data stream is a tuple 
● Given a list of keys S,  determine which elements of stream have keys in S  
● Obvious solution: store all keys S

○ S may not fit in memory (e.g., millions of filters on the same stream)

Applications: 

● Email spam filtering
○ We know 1 billion “good” email addresses
○ If an email comes from one of these, it is NOT spam

● Publish-subscribe
○ People express interest in certain sets of keywords  
○ Determine whether each message matches a user’s interest



Bloom Filters
● Create a bit array B of size n
● Use k independent hash functions h1 ,…,hk
● Initialize B to all 0’s
● Hash each element s in S using each function, and set B[hi (s)] = 1 for i = 

1,..,k
● When a stream element with key x arrives

○ If B[hi (x)] = 1 for i= 1,..,k, then declare that x is in S  
○ Otherwise discard the element 

● No false-negatives
○ Is the element in the set? → No/Maybe



Example

0 1 2 3 4 5 6 7 8 9 10 11

2 hash functions h1, h2

Stream: {5, 4, 15, …}

● Input: 5, h1(5) = 3, h2(5) = 11
● Input: 4, h1(4) = 7, h2(4) = 10
● Input: 4, h1(15) = 1, h2(15) = 8

Query: Is 2 in stream?

h1(2) = 8  , h2(2) = 9   → NO!

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11



Till now... Reality

Input Output

Streaming 
Operator

Need for systems that handle complex distributed streams
- Scalability
- Fault-tolerance



Deal with scalability
If resources are not enough…
❖ Scale-Up: Get a bigger machine

➢ “Huge” machines not accessible to 
everyone (-)

➢ Not easy to migrate a live application (-)
➢ Code remains as is (+)

❖ Scale-Out: Use more machines
➢ Commodity-hardware (+)
➢ Elasticity actions (+)
➢ Distributed Algorithm is required (-)



The Word Count Example

There is a theory which states that if 
ever anyone discovers exactly what 
the Universe is for and why it is here, 
it will instantly disappear and be 
replaced by something even more 
bizarre and inexplicable. There is 
another theory which states that this 
has already happened.

WordCount



A naive implementation

The bigger the dataset, the more resources we need!



Scaling out



Delivery guarantees in streams
At most once (fire and forget): the message is sent, but the sender doesn’t care if 
it is received or lost

At least once: retransmission of a message will occur until an ack is received.

Exactly once: A message is received once and only once



Apache Flink
Distributed processing engine for stateful computations over unbounded streams.

Applications are parallelized into tasks that are distributed and concurrently 
executed in a cluster.

Exactly once processing



Architecture



Flink API



Windows
● Tumbling 
● Sliding
● Session



Tumbling Windows
● Configurable size
● Non-overlapping



Sliding windows
● Configurable size
● Configurable slide



Session Windows
The window closes when 
a gap of inactivity 
occurrs

● Configurable 
incativity gap



Time in Flink

env.setStreamTimeCharacteristic (TimeCharacteristic .ProcessingTime);



Event Time and Watermarks
● Event time can progress independently of processing time

○ progress through weeks of event time with only a few seconds of processing

● Watermarks
○ part of the data stream and carry a timestamp t
○ event time has reached time t in that stream
○ no more elements from the stream with a timestamp t’ <= t 



State Backends



Spark Streaming
● Data ingested from many 

sources
● Processed using complex 

algorithms expressed with 
high-level functions like map, 
reduce, join and window.

● Machine learning and graph 
processing algorithms on data 
streams 

https://spark.apache.org/docs/2.2.0/ml-guide.html
https://spark.apache.org/docs/2.2.0/graphx-programming-guide.html
https://spark.apache.org/docs/2.2.0/graphx-programming-guide.html


Resilient Distributed Datasets (RDD)
● Immutable distributed collection of objects
● Divided into logical partitions
● Can be persisted in memory
● How to create an RDD:

○ Parallelize existing collection
○ Reference dataset in an external storage system (e.g., HDFS)

● Transformations
○ Lazy evaluation

● Actions
○ Trigger actual computation





Discretized Streams 

DStream = Sequence of RDDs



Computational Models



Word Count in TCP sockets



Sliding Windows

Window length and sliding interval must be multiples of the batch interval of the 
source DStream



Fault-tolerance 
● A streaming application must operate 24/7

○ Resilient to failures

● Two types of data that are checkpointed:
○ Metadata checkpointing - Saving of the information defining the streaming computation to 

fault-tolerant storage
■ Configuration - The configuration that was used to create the streaming application.

■ DStream operations - The set of DStream operations that define the streaming 

application.

■ Incomplete batches - Batches whose jobs are queued but have not completed yet.

○ Data checkpointing - Saving of the generated RDDs to reliable storage. This is necessary in 
some stateful transformations that combine data across multiple batches.



Delivering Guarantees in Spark Streaming
 Processing phases of Spark Streaming: 

1. Receive data (depends on data source)
2. Do transformation (exactly once)
3. Push outputs. (at least once - depends on data source)



Other streaming frameworks



Use cases (1)
Event-driven applications: stateful, ingest events from 1/many streams and react 
by triggering computations, state updates, or external actions.

● Fraud detection
● Anomaly detection
● Rule-base alerting
● Business process monitoring

Data Analytics: extract information and insight from raw data in real-time fashion

● Quality monitoring of networks
● Large-scale graph analysis



Use cases (2)
Data pipeline applications: 

● Extract-transform-load (ETL) is a common approach to convert and move 
data between storage systems.

● Data pipelines transform and enrich data and can move it from one storage 
system to another.

● Continuous streaming mode instead of being periodically triggered.
● Real-time search index building in e-commerce
● Continuous ETL



Typical Application Architecture



Twitter Sentiment Analysis



Anomaly Detection




