
Distributed RDF Datastores

Dimitrios Tsoumakos

Some slides taken from :

•Distributed Big Graph Management Methods and Systems, N. Papailiou

•Hexastore: Sextuple Indexing for Semantic Web Data Management, C. Weiss,

P. Karras, et al

•Matrix “Bit” loaded: A Scalable Lightweight Join Query Processor for RDF Data,

Medha Atre, et al

BIG DATA, MODERN DISTRIBUTED

COMPUTE ENGINES AND NOSQL

DATABASES OVERVIEW

How much data?

Hadoop: 10K nodes,

150K cores, 150 PB

(4/2014)

Processes 20 PB a day (2008)

Crawls 20B web pages a day (2012)

Search index is 100+ PB (5/2014)

Bigtable serves 2+ EB, 600M QPS

(5/2014)

300 PB data in Hive +

600 TB/day (4/2014)

400B pages,

10+ PB

(2/2014)

LHC: ~15 PB a year

LSST: 6-10 PB a year

(~2020)640K ought to be

enough for

anybody.

150 PB on 50k+ servers

running 15k apps (6/2011)

S3: 2T objects, 1.1M

request/second (4/2013)

SKA: 0.3 – 1.5 EB

per year (~2020)

Hadoop: 365 PB, 330K

nodes (6/2014)

No data like more data!

(Banko and Brill, ACL 2001)

(Brants et al., EMNLP 2007)

s/knowledge/data/g;

How do we get here if we’re not Google?

What is cloud computing?

Just a buzzword?

 Before clouds…

 P2P computing

 Grids

 HPC

 …

 Cloud computing means many different things:

 Large-data processing

 Rebranding of web 2.0

 Utility computing

 Everything as a service

Rebranding of web 2.0

 Rich, interactive web applications

 Clouds refer to the servers that run them

 AJAX as the de facto standard (for better or worse)

 Examples: Facebook, YouTube, Gmail, …

 “The network is the computer”: take two

 User data is stored “in the clouds”

 Rise of the netbook, smartphones, etc.

 Browser is the OS

Utility Computing

 What?

 Computing resources as a metered service (“pay as you go”)

 Ability to dynamically provision virtual machines

 Why?

 Cost: capital vs. operating expenses

 Scalability: “infinite” capacity

 Elasticity: scale up or down on demand

 Does it make sense?

 Benefits to cloud users

 Business case for cloud providers

I think there is a world

market for about five

computers.

Enabling Technology: Virtualization

Hardware

Operating System

App App App

Traditional Stack

Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack

Cloud computing market

Hardware provider

Cloud technology enabler

Infrastructure as a service

Platform as a service

Software as a service Everything is a service

Everything as a Service

 Utility computing = Infrastructure as a Service (IaaS)

 Why buy machines when you can rent cycles?

 Examples: Amazon’s EC2, Rackspace

 Platform as a Service (PaaS)

 Give me nice API and take care of the maintenance, upgrades, …

 Example: Google App Engine

 Software as a Service (SaaS)

 Just run it for me!

 Example: Gmail, Salesforce

Building Blocks

Source: Barroso and Urs Hölzle (2009)

Storage Hierarchy

Source: Barroso and Urs Hölzle (2013)

How do we scale up?

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

Parallelization Challenges

 How do we assign work units to workers?

 What if we have more work units than workers?

 What if workers need to share partial results?

 How do we aggregate partial results?

 How do we know all the workers have finished?

 What if workers die?

What is the common theme of all of these problems?

Synchronization!

 Parallelization problems arise from:

 Communication between workers (e.g., to exchange state)

 Access to shared resources (e.g., data)

 Thus, we need a synchronization mechanism

Managing Multiple Workers

 Difficult because

 We don’t know the order in which workers run

 We don’t know when workers interrupt each other

 We don’t know the order in which workers access shared data

 Thus, we need:

 Semaphores (lock, unlock)

 Conditional variables (wait, notify, broadcast)

 Barriers

 Still, lots of problems:

 Deadlock, livelock, race conditions...

 Dining philosophers, sleeping barbers, cigarette smokers...

 Moral of the story: be careful!

“Big Ideas”

 Scale “out”, not “up”

 Limits of SMP and large shared-memory machines

 Move processing to the data

 Cluster have limited bandwidth

 Process data sequentially, avoid random access

 Seeks are expensive, disk throughput is reasonable

 Seamless scalability

 From the mythical man-month to the tradable machine-hour

MapReduce

What is MapReduce?

 Programming model for expressing distributed

computations at a massive scale

 Execution framework for organizing and performing such

computations

 Open-source implementation called Hadoop

Typical Large-Data Problem

 Iterate over a large number of records

 Extract something of interest from each

 Shuffle and sort intermediate results

 Aggregate intermediate results

 Generate final output

Key idea: provide a functional abstraction for

these two operations

(Dean and Ghemawat, OSDI 2004)

Challenges

1. Cheap nodes fail, especially if you have many

 Mean time between failures for 1 node = 3 years

 Mean time between failures for 1000 nodes = 1 day

 Solution: Build fault-tolerance into system

2. Commodity network = low bandwidth

 Solution: Push computation to the data

3. Programming distributed systems is hard

 Solution: Data-parallel programming model: users write “map” &

“reduce” functions, system distributes work and handles faults

MapReduce

 Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’’, v’’>*

 All values with the same key are reduced together

 The execution framework handles everything else…

 Not quite…usually, programmers also specify:

partition (k’, number of partitions) → partition for k’

 Often a simple hash of the key, e.g., hash(k’) mod n

 Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*

 Mini-reducers that run in memory after the map phase

 Used as an optimization to reduce network traffic

mapmap map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

MapReduce “Runtime”

 Handles scheduling

 Assigns workers to map and reduce tasks

 Handles “data distribution”

 Moves processes to data

 Handles synchronization

 Gathers, sorts, and shuffles intermediate data

 Handles errors and faults

 Detects worker failures and restarts

 Everything happens on top of a distributed FS

Two more details…

 Barrier between map and reduce phases

 But we can begin copying intermediate data earlier

 Keys arrive at each reducer in sorted order

 No enforced ordering across reducers

MapReduce Execution

 Single master controls job execution on multiple slaves

 Mappers preferentially placed on same node or same rack

as their input block

 Minimizes network usage

 Mappers save outputs to local disk before serving them to

reducers

 Allows recovery if a reducer crashes

 Allows having more reducers than nodes

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 2

fox, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Inverted Index Example

 Input: (filename, text) records

 Output: list of files containing each word

 Map:

foreach word in text.split():
output(word, filename)

 Combine: uniquify filenames for each word

 Reduce:
def reduce(word, filenames):

output(word, sort(filenames))

Inverted Index Example

to be or not
to be afraid, (12th.txt)

be, (12th.txt, hamlet.txt)
greatness, (12th.txt)

not, (12th.txt, hamlet.txt)
of, (12th.txt)

or, (hamlet.txt)
to, (hamlet.txt)

hamlet.txt

be not
afraid of
greatness

12th.txt

to, hamlet.txt
be, hamlet.txt
or, hamlet.txt
not, hamlet.txt

be, 12th.txt
not, 12th.txt
afraid, 12th.txt
of, 12th.txt
greatness, 12th.txt

Hadoop Components

 Distributed file system (HDFS)

 Single namespace for entire cluster

 Replicates data 3x for fault-tolerance

 MapReduce framework

 Executes user jobs specified as “map” and “reduce”

functions

 Manages work distribution & fault-tolerance

Hadoop Distributed File System

 Files split into 64MB blocks

 Blocks replicated across several

datanodes (usually 3)

 Single namenode stores metadata

(file names, block locations, etc)

 Optimized for large files,

sequential reads

 Files are append-only

Namenode

Datanodes

1

2

3

4

1

2

4

2

1

3

1

4

3

3

2

4

File1

Sequoia
16.32 PFLOPS

98,304 nodes with 1,572,864 million cores

1.6 petabytes of memory

7.9 MWatts total power

Introduction to NoSQL,
HBase

Material adapted from slides by :
Perry Hoekstra and Gary Dusbabek(Rackspace)
CS 525 Indranil Gupta

SQL

• Specialized data structures (think B-trees)

– Shines with complicated queries

• Focus on fast query & analysis

– Not necessarily on large datasets

Scaling Up

• Issues with scaling up when the dataset is just
too big

• RDBMS were not designed to be distributed

• Began to look at multi-node database
solutions

• Known as ‘scaling out’ or ‘horizontal scaling’

• Different approaches include:

– Master-slave

– Sharding

What is NoSQL?

• Stands for Not Only SQL

• Class of non-relational data storage systems

• Usually do not require a fixed table schema
nor do they use the concept of joins

• All NoSQL offerings relax one or more of the
ACID properties (will talk about the CAP
theorem)

How did we get here?
• Explosion of social media sites (Facebook,

Twitter) with large data needs

• Rise of cloud-based solutions such as
Amazon S3 (simple storage solution)

• Just as moving to dynamically-typed
languages (Ruby/Groovy), a shift to
dynamically-typed data with frequent
schema changes

• Open-source community

More Programming and Less Database
Design

Alternative to traditional relational DBMS

+ Flexible schema

+ Quicker/cheaper to set up

+ Massive scalability

+ Relaxed consistency  higher performance
& availability

– No declarative query language more
programming

– Relaxed consistency  fewer guarantees

Challenge: Coordination

• The solution to availability and scalability is to decentralize
and replicate functions and data…but how do we
coordinate the nodes?

– data consistency

– update propagation

– mutual exclusion

– consistent global states

– group membership

– group communication

– event ordering

– distributed consensus

– quorum consensus

Dynamo and BigTable

• Three major papers were the seeds of the
NoSQL movement

– BigTable (Google)

– Dynamo (Amazon)

• Gossip protocol (discovery and error detection)

• Distributed key-value data store

• Eventual consistency

– CAP Theorem

CAP Theorem

• Proposed by Eric Brewer (Berkeley)

• Subsequently proved by Gilbert and Lynch

• In a distributed system you can satisfy at most
2 out of the 3 guarantees

1. Consistency: all nodes have same data at any
time

2. Availability: the system allows operations all the
time

3. Partition-tolerance: the system continues to work
in spite of network partitions

47

C

A P

Fox&Brewer “CAP Theorem”:
C-A-P: choose two.

Consistency

Availability Partition-resilience

Claim: every distributed
system is on one side of
the triangle.

CA: available, and
consistent, unless there is
a partition.

AP: a reachable replica
provides service even in a
partition, but may be
inconsistent if there is a
failure.

CP: always consistent, even in a
partition, but a reachable replica
may deny service without
agreement of the others (e.g.,
quorum).

Availability

• Traditionally, thought of as the server/process
available five 9’s (99.999 %).

• However, for large node system, at almost any
point in time there’s a good chance that a
node is either down or there is a network
disruption among the nodes.

– Want a system that is resilient in the face of
network disruption

Consistency Model
• A consistency model determines rules for visibility and apparent

order of updates.

• For example:

– Row X is replicated on nodes M and N

– Client A writes row X to node N

– Some period of time t elapses.

– Client B reads row X from node M

– Does client B see the write from client A?

– Consistency is a continuum with tradeoffs

– For NoSQL, the answer would be: maybe

– CAP Theorem states: Strict Consistency can't be achieved at the same
time as availability and partition-tolerance.

Eventual Consistency
• When no updates occur for a long period of time,

eventually all updates will propagate through the
system and all the nodes will be consistent

• For a given accepted update and a given node,
eventually either the update reaches the node or the
node is removed from service

• Known as BASE (Basically Available, Soft state,
Eventual consistency), as opposed to ACID
– Soft state: copies of a data item may be inconsistent

– Eventually Consistent – copies becomes consistent at some
later time if there are no more updates to that data item

– Basically Available – possibilities of faults but not a fault of
the whole system

NoSQL Categories

Categories of NoSQL databases

• Key-value stores

• Column NoSQL databases

• Document-based

• Graph database (neo4j, InfoGrid)

• XML databases (myXMLDB, Tamino, Sedna)

Key/Value

Pros:
– very fast

– very scalable

– simple model

– able to distribute horizontally

Cons:

- many data structures (objects) can't be easily

modeled as key value pairs

Schema-Less

Pros:
- Schema-less data model is richer than key/value

pairs

- eventual consistency

- many are distributed

- still provide excellent performance and scalability

Cons:

- typically no ACID transactions or joins

Common Advantages

• Cheap, easy to implement (open source)
• Data are replicated to multiple nodes (therefore

identical and fault-tolerant) and can be
partitioned
– Down nodes easily replaced
– No single point of failure

• Easy to distribute
• Don't require a schema
• Can scale up and down
• Relax the data consistency requirement (CAP)

Typical NoSQL API

• Basic API access:

– get(key) -- Extract the value given a key

– put(key, value) -- Create or update the value given its key

– delete(key) -- Remove the key and its associated value

– execute(key, operation, parameters) -- Invoke an operation
to the value (given its key) which is a special data structure
(e.g. List, Set, Map etc).

What am I giving up?

• joins

• group by

• order by

• ACID transactions

• SQL as a sometimes frustrating but still powerful
query language

• easy integration with other applications that support
SQL

An Introduction to Hadoop HBase

HBase is …

• A distributed data store that can scale horizontally to
1,000s of commodity servers and petabytes of
indexed storage.

• Designed to operate on top of the Hadoop
distributed file system (HDFS) or Kosmos File System
(KFS, aka Cloudstore) for scalability, fault tolerance,
and high availability.

Benefits

• Distributed storage

• Table-like in data structure

– multi-dimensional map

• High scalability

• High availability

• High performance

Data Model

• Tables are sorted by Row

• Table schema: column families
– Each family consists of any number of columns

– Each column consists of any number of versions

– Columns only exist when inserted, NULLs are free.

– Columns within a family are sorted and stored together

• Everything except table names are byte[]

• (Row, Family: Column, Timestamp)  Value

Row key

Column Family

valueTimeStamp

Architecture

HFile

Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

SSN:000-01-2345

(For a census table example)

Demographic

Ethnicity

