RDF datastores

Dimitrios Tsoumakos

Some slides taken from :

.Triple Stores, Dr. Stephan Volmer
-Storing and querying RDF data, Khriyenko Oleksiy
.Distributed Big Graph Management Methods and Systems, N. Papailiou

Part 1

INTRO TO SEMANTIC WEB - RDF - SPARQL

Sematic Web

— Unstructured data is becoming more and
more common

— How do we best handle unstructured data?
Relational databases are not the answer!

(more on that later)

— Metadata helps describe the content of
unstructured data

— Creating a standard will help push forward
the semantic web

Semantic Web

— Collaborative movement led by the international standards
body, the World Wide Web Consortium (W3C)

W\Sf‘“” Semantic
v, ’ Web

— Promotes common data formats on the World Wide Web

— Aims at converting the current web dominated by
unstructured and semi-structured documents into a “web
of data”

“The Semantic Web provides a common framework that allows
data to be shared and reused across applications, enterprises,
and community boundaries.”

The Semantic Web Stack

User Interface & Applications

j 2
=
c
4

Logic

Ontologies RU IeS

Querying

Taxonomies

0
<
2

—t

S
U

9

Q
=
<

Data Interchange

Syntax

ldentifiers Character Set

The Semantic Web Stack

User Interface & Applications

=
ﬁ
-
wn
—t

It

Logic

- O

Kydes301dK1H

RDF

Resource Description Framework

— Family of standards from W3C
http://www.w3c.org/RDF/
— Make statements about things
The sky has the colour blue

— Syntax is XML
®1ue"/>

<sky co

RDF

RDF makes statements about things

triple

RDF

— Triple data structure is a simple EAV model

— Any data structure can be represented as
triples

<entity> <attribute-value> <value>

<su bject> <predicate> <0 bject>

— RDF uses different terminology

RDF

URIs in RDF

— Provide namespaces to uniquely name the things we
want to talk about

— Provide a way to identify the properties and types of
things in a way that is sharable and unique

— Anyone can say anything about any things with a
shared URI identifier

RDF

— Subject and Predicate are always URIs
— Object is either a literal or another URI

<http://www.zuehlke.com/person/stv> subject
<http://www.zuehlke.com/properties/name> predicate
"Stephan Volmer" object

<http://www.zuehlke.com/person/stv>
<http://www.zuehlke.com/properties/business-unit>
<http://www.zuehlke.com/business-units/dns>

<http://www.zuehlke.com/person/stv>
<http://www.zuehlke.com/properties/email>
"stephan.volmer@zuehlke.com"

RDF

RDF graphs are the glue to make it work.

— Logical collection of triples
— One store may contain many graphs

— Named graphs are RDF graphs with a
URI name often called the context

— Graphs can be targeted
* import data into a graphs
e export a graph
* query / update data in graph
* merging data from different sources
e controlling access to data

RDF data evolution

2007 2008 2009 2011

Real-life RDF data

N
DBpédia

8l0=2RDF

ROF-encoded Wikipedia
RDF-encoded biological data
Us government data in RDF
Crawled Web data

US population statistics

Yago facts from Wikipedia,
Wordnet, Geonames

Linked Open Data ¢loud

14

1.89 billion triples
2.7 billion triples
5 billion triples

2 billion triples

1 billion triples

0.12 billion triples

30 billion triples

RDF

Say good-bye to schema-free, say hello to schema-less

— Core RDF is schema-free
— Any shape of data can be poured into a triple

store

— Sometimes a common ontology is helpful for
sharing and reusing knowledge bases

RDF

Schema

->et of RDF properties for
defining types and their
constraints

‘R

R

).

)

YRS

schema 1s expressed as

SPARQL

» TAwWoox eTTEpWTNONC TWV RDF d€dOPEVWLIV

» BotolkO oToLxelo T triple patterns
> Triples TTOU UTTOPOUV VX TTEPLEXOLV METHPANTEC
> T1.X. ?person rdf:type foaf:Person
» SparQL epwTNUXTH: ZLVOLXXOMOC xTTO BGP

o TTKPXOELYMWXK:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?name ?email
WHERE {
?person rdf:type foaf:Person.
’person foaf:name ?name.
?person foaf:mbox ?email.

§

16

SPARQL

User Interface & Applications

Trust

It

Logic

Ontologie

|

Rules

SPARQL

Taxonomies

AgydeasoldAa)

Data Interchange

Syntax

Character St

SPARQL

— SPARQL is pronounced “sparkle”
— SPARQL is a recursive acronym for
SPARQL Protocol and RDF Query Language

— SPARQL became an official W3C
recommendation in 2008

— SPARQL allows for a query to consist of

* triple patterns,

* conjunctions,
 disjunctions, and
e optional patterns

SPARQL: General Form

B SPARQL queries take the following general form

PREFIX (Namespace Prefixes)
e.g. PREFIX f: <http://example.org#>

SELECT (Result Set)
e.g. SELECT ?age

FROM (Data Set)
e.g. FROM <http://users.jyu.fi/~olkhriyve/itks544/rdf/people.rdf>

WHERE (Query Triple Pattern)
e.g. WHERE { f:mary f:age ?age }

ORDER BY, DISTINCT, etc. (Modifiers)
e.g. ORDER BY 7?age

http://example.org/
http://users.jyu.fi/~olkhriye/itks544/rdf/people.rdf

@prefix f: <http://example.org#> .

Example data set

@prefixxsd:
@prefix<http://www.w3.0rg/2001/XMLSchema#> .
foaf: <htto://xmlns.com/foaf/0.1/>.

: john
:bill
:mary
: Jane
: john
:bill
:mary
:jane
: john
:bill
: john
: john
:bill
:mary
: Jane
:bill
: john
:mary
: Jane

Fh th th th th th th Fhth th th Fh Fh Fh Fh Fh Fh Fh Fh

a

th Hh th thth Hh Hh th Fh Fh Hh 0 @

foaf:Person
foaf:Person
foaf:Person
foaf:Person

rage "25"**xsd:int
:age "30"**xsd:int
:age "24"**xsd:int
age "26"**xsd:int
:loves f:mary
:loves f:jane
:hasFriend f:bill.
:name "John Roy"
:name "Bill Jou"
:name "Mary Lestern"
:name "Jane Caiton"

foaf:name "Bill"
foaf:name "John"
foaf:name "Mary"
foaf:name "Jane"

Bill Jou

Tf:name

f :name

Jane Caiton

f:loves

f :name

\

4

T‘f:name

:age

24

Mary Lestern

23

http://example.org/
http://example.org/
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://xmlns.com/foaf/0.1/

Simple SPARQL queries (1)

B Show me the property £:age of resource f:mary

Data

f:loves #

f:loves

Query

SELECT ?age
WHERE { <http://example.orgf#mary>
<http://example.orgf#fage> ?age }

PREFIX f: <http://example.org#> SELECT
?age
WHERE { f:mary f:age ?age }

Result
f:age age

?age 24

http://example.org/
http://example.org/
http://example.org/

Simple SPARQL queries (2)

B Show me f£:age of all resources

Data

o - f:loves @@

Query

PREFIX f: <http://example.orgf#> SELECT
?person ?age
WHERE { ?person f:age ?age }

f:loves

Result

f:age
v ’ person age
25 24 £:age
) £:bill | 30

?age

f:jane 26
f:john 25
f:mary 24

http://example.org/

Simple SPARQL queries (3)

m Show me all things that are loved. Also show me their age (£:age)

Data Query

(og f:loves

PREFIX f: <http://example.org#> SELECT
?person ?age

WHERE {

?x f:loves 7?person

?person f:age ?age

}

f:loves

25 24

Result

person | age

5 f:loves
f:jane | 26

f:age

f:mary 24

?age

http://example.org/

SPARQL: FILTER (testing values)

B Show me people and their age for people older than 25.

Data Query
frioves (- oo PREFIX f: <http://example.org#> SELECT
?person ?age
WHERE {
?person f:age 7age . FILTER (7age >
25)

}

If 7age is not a number, then it will notwork

Result

person| age
£f:bill] 30
f:janel 26

?person

f:age

?age

http://example.org/

SPARQL: FILTER (string matching)

m Show me people and their name if name has “r’ or “R” in it.

Data Syntax

Bill Jou Jane Caiton

FILTER regex(?x, “pattern”[, “flags”])

13-/
I

Flag means a case-insensitive pattern

Query

PREFIX f: <http://example.orgi#> SELECT
?person ?name

WHERE {

?person f:name ?name

f:loves

fiad® FILTER regex(?name, "r", "i")
25 24 }
f:name f:name
v v
John Roy Mary Lestern ReSUlt
person name
f:john John Roy

f:mary | Mary Lestern

?name

http://example.org/

SPA RQL FILTER (EXISTS / NOT EXISTS)

EXISTS expression tests whether the pattern can be found in the data.

NOT EXISTS expression tests whether the pattern does not match the dataset.

Data

Result

Syntax
FILTER EXISTS {“pattern”}

person

f:bill

person

f:jane

FILTER NOT EXISTS {“pattern”}

Query
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-nsi>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX f: <http://example.orgi>

SELECT ?person WHERE {
?person rdf:type foaf:Person .
FILTER EXISTS {?person foaf:name “name}

}

SELECT ?person WHERE {
?person rdf:type foaf:Person .
FILTER NOT EXISTS {?person foaf:name ?name}

}

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://xmlns.com/foaf/0.1/
http://example.org/

SPARQL FILTER (MINUS)

B MINUS removes matches based on the evaluation of two patterns.

Data Query
Bill John Jane PREFIX foaf: <http://xmlns.com/foaf/0.1/>

: PREFIX f: <http://example.org#>
foaf:name ll\ /|

rdf: typ

N

SELECT DISTINCT ?s WHERE { ?s ?p 7?0
MINUS { ?s foaf:name "John" . }
}

foaf:Person

Result

S

f:bill

f:jane

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://example.org/
http://example.org/

SPARQL: OPTIONAL

B Show me the person and its age (£: age). If you have information that
person loves somebody, then show it as well.

Data Query

PREFIX f: <http://example.orgf#> SELECT
?person ?age ?lover WHERE ({

?person f:age 7age .

OPTIONAL {?person f:loves ?lover}

f:loves

Result

persod age lover
f:bill] 30 f:Jjane
f:john 25 f:mary

f:age

f:maryl 24

?age

f:janel 26

http://example.org/

SPARQL: OPTIONAL with FILTER

m Show me the person and its age (£:age). If you have information about that
person loving somebody, then show that person if his/her name contains “ r”.

Data Query

Bill Jou Jane Caiton PREFIX f: <http://example.org#> SELECT ?person
A i 7age ?lover WHERE ({

?person f:age ?age

OPTIONAL {?person f:loves ?lover

?lover f:name ?loverName

FILTER regex(?loverName, "r", "i")}

}

Result
person| age | lover

f:namev f:namev f:blll 30

John Roy Mary Lestern

f:john 25 f:mary

f:mary| 24

f:janel 26

http://example.org/

SPARQL: Logical OR (UNION)

B Show me all people who have a friend together with all the people that
are younger than 25

Data Query

f:loves | PREFIX f: <http://example.org#> SELECT ?person

WHERE ({
{?person f:age 7age . FILTER (7age < 25)}

UNION
{?person f:hasFriend ?friend}

Result
PREFIX f: <http://example.org#> SELECT ?person
WHERE {?person f:age 7age . FILTER (“age < 25)} person
f:mary
+
PREFIX f: <http://example.org#f> SELECT ?person f:john

WHERE {?person f:hasFriend ?friend}

http://example.org/
http://example.org/
http://example.org/

Triple Stores

— Persistent data store for the RDF model
— Core data structures are triples and graphs
— Triple stores are usually transactional

— Several standards for triple stores are
proposed
* RDF
* RDFS
* SPARQL
*Standardization is critical
Standardization is what made SQL popular

Triple Stores

In-Memory

Transient storage of triples in memor
Stores 5 P Y

Native Persistent storage of triples in native stores
Stores with their own storage implementation

Non-Native Persistent storage of triples on top of third-
Stores party databases

Triple Stores

¢ Trlple Store SPARQL Protocol
API

e I
— Insert/delete
— Batch insert/delete SPARQL

Transaction Processor
Processor

— Export graph

— SPARQL query

Advantages

Do triple stores offer an advantage over relational databases?

— No need to create schemas

* Can create new predicates (columns) on the fly

* No need to link tables because you can have one
to many relationships directly

— Data interoperability

— Can run queries off of this data just like in a
relational database model

Ok, but...

what are the challenges brought forth?

— No schema -> indexing/storage?

— complex queries can be written in SPARQL
* Simple SQL query may translate to 10s of SPARQL
joins!
* optimization needed! (join orders, cost-based
planning, etc)
— Data size + data distribution
* Big data methods/tools needed
* Nosqgl, hadoop, spark, graph databases, ...

RDF engines

» RDBMS-based:

- ATToOnkevouvv Tx RDF d€00ONEVXX CUMPWVHX UE KXTTOLO OXNMX
O€ ULX OXEOLXKN BXON OEDOHMEVWIV
» Native stores:

> XpNOLUMOTTOLOLV EEELOLKEVMEVO TPOTTO XTTOONKELONC KKXL
eETTEpWTNONC TWV RDF d0€dOPEVWV

» Graph indexing:

> XpNOLMOTTOLOLV XAYOPLOMOUC YpXPWV YL TNV XTTOONKELON
KXL ETTEpWTNON TwV RDF d€d0OpEVWYV

36

COMMERCIAL AND KNOWN
SOLUTIONS

Champion

Neo4j
Orient

AllegroGraph

arkLogic

Teradata Aster
Stardo

BlazeGraph

& Operational & Semantic/ O Analytic @ unification
focus text focus focus focus

Picture from Graph and RDF databases 2016, by Bloor, 2017

Native RDF Stores

RDF stores that implement their own database engine without reusing the storage
and retrieval functionalities of other database management systems:

m4Store and 5Store (under GPL and commercial) are RDF databases developed by Garlik Inc.

4Store is available under GNU General Public License (GPL). Client connectors are available for PHP, Ruby,
Python, and Java. 5Store (unlike 4Store) is commercial software and provides similar features as 4Store, but
improved efficiency and scalability.

lAIIegroGraph (commercial) is a commercial RDF graph database and application framework

developed by Franz Inc. There are different editions of AllegroGraph and different clients: the free RDFStore
server edition is limited to storing less than 50 million triples, a developer edition capable of storing a maximum of
600 million triples, and an enterprise edition with storage capacity only limited by the underlying server
infrastructure. Clients connectors are available for Java, Python, Lisp, Clojure, Ruby, Perl, C#, and Scala.

lApache Jena TDB (open-source) is a component of the Jena Semantic Web framework and
available as open-source software released under the BSD license.

lMngara (open source, Open Software License) is the community-driven successor of Kowari and is

described as a purely Java-based, scalable, and transaction-safe RDF database for the storage and retrieval of
RDF-based metadata.

lGraphDB ™ (formerly OWLIM) — An Enterprise Triplestore with Meaning (GNU LGPL license and

commercial). It is a family of commercial RDF storage solutions, provided by Ontotext. There are three different
editions: GraphDB™ Lite, GraphDB™ Standard and GraphDB™ Enterprise.

mAnd many more

DBMS-backed Stores

RDF Stores that use the storage and retrieval functionality provided by another database
management system:

lApache Jena SDB (open-source) is another component of the Jena Semantic Web

framework and provides storage and query for RDF datasets using conventional relational databases:
Microsoft SQL Server, Oracle 10g, IBM DB2, PostgreSQL, MySQL, HSQLDB, H2, and Apache Derby.

mOracle Spatial and Graph: RDF Semantic Graph (formerly Oracle

Semantic TechnologieS) is a W3C standards-based, full-featured graph store in Oracle
Database for Linked Data and Social Networks applications.

mSemantics Platform isa family of products for building medium and large scale semantics-

based applications using the Microsoft .NET framework. It provides semantic technology for the storage,
services and presentation layers of an application.

lRDFLIb Is a pure Python package working with RDF that contains most things you need to work
with, including: parsers and serializers for RDF/XML, N3, NTriples, N-Quads, Turtle, TriX, RDFa and
Microdata; a Graph interface which can be backed by any one of a number of Store implementations;
store implementations for in memory storage and persistent storage on top of the Berkeley DB; a SPARQL
1.1 implementation supporting Queries and Update statements.

Hybrid Stores

RDF Stores that supports both architectural styles (native and DBMS-backed):

mSesame (open-source) is an open source framework for storage, inferencing and querying of

RDF data. Itis a library that is release under the Aduna BSD-style license and can be integrated in
any Java application. Sesame includes RDF parsers and writers (Sesame Rio), a storage and
inference layer (SAIL API) that abstracts from storage and inference details, a repository API for
handling RDF data, and an HTTP Server for accessing Sesame repositories via HTTP. It operates in
any Java-supporting environment and can be used by any Java application. In May 2015, Sesame
officially forked into an Eclipse project called RDF4J.

B OpenLink Virtuoso Universal Server is a hybrid storage solution for a range of

data models, including relational data, RDF and XML, and free text documents. Through its unified
storage it can be also seen as a mapping solution between RDF and other data formats, therefore it
can serve as an integration point for data from different, heterogeneous sources. Virtuoso has gained
significant interest since it is used to host many important Linked Data sets (e.g., DBpedia), and
preconfigured snapshots with several important Linked Data sets are offered. Virtuoso is offered as
an open-source version; for commercial purposes several license models exist.

lBlazegraph (open-source and commercial license) is ultra-scalable, high-performance

graph database with support for the Blueprints and RDF/SPARQL APls. Blazegraph is available in a
range of versions that provide solutions to the challenge of scaling graphs. Blazegraph solutions
range from millions to trillions of edges in the graph.

mRedStore isa lightweight RDF triplestore written in C using the Redland library.

Sesame

Sesame is a framework for processing RDF data
Home: http://rdf4j.org/

Features:
— Parsing
« Supports all major notations
— Storing
* In-memory, RDBS-backed, file-based
— Inferencing
* Rule-based, Ontology-based
— Querying
« SPARQL, SeRQL

Java-based APl + tools

AliBaba is an RDF application library for developing complex RDF storage
applications. It is a collection of modules that provide simplified RDF store
abstractions to accelerate development and facilitate application maintenance.

http://rdf4j.org/

Sesame architecture

application HTTP Server
Repository API
SailRepositary HITFPRepositary
Sail APL || Rio |[HTTPClient|, ~ ™| HITP Server |
RDF Model
Rio (RDF 1/0)

— Parsers and writers for various notations

Sail (Storage And Inference Layer)
— Low level System API
— Abstraction for storage andinference
Repository API
— Higher level API
— Developer-oriented methods for handling RDF data

HTTP Server
— Accessing Sesame throughHTTP

Apache Jena

m Apache Jenais a Java framework (collection of tools
and Java libraries) to simplify the development of
Semantic Web and Linked Data applications.

B Home: http://jena.apache.org/index.html

® Includes:
— RDF API for processing RDF data in various notations
— Ontology API for OWL and RDFS
— Rule-based inference engine and Inference API
— TDB - a native triple store
— SPARQL query processor (called ARQ)
— Servers for publishing RDF data to other applications

http://jena.apache.org/index.html

Mulgara

Mulgara - is a RDF database (successor of Kowari RDF database):
http://www.mulgara.org/

m Written entirely in Java

Querying language — SPARQL and own TQL
TQL language:

— Interpreted querying and command language
— To manage Mulgara storage (upload, etc.)

SPARQL - query-only language:

REST interface for TQL and
SPARQL

http://www.mulgara.org/

AllegroGraph

m AllegroGraph is a high-performance persistent graph database

m Editions of AllegroGraph: the free RDFStore server edition is limited to storing less
than 50 million triples, a developer edition capable of storing a maximum of 600
million triples, and an enterprise edition with storage capacity only limited by the
underlying server infrastructure.

m Supports SPARQL, RDFS++, and Prolog reasoning

m Supports REST Protocol clients: Java Sesame, Java Jena, Python, C#, Clojure,
Perl, Ruby, Scala and Lisp clients.

B Link: http://allegrograph.com, http://www.franz.com/agraph/allegrograph/

m AllegroGraph Web View (AGWebView) is a graphical user interface

for exploring, querying, and managing AllegroGraph triple stores. It uses HTTP
interface to provide the services through a web browser.

B Gruff - a graph-based triple-store browser for AllegroGraph.

e L r A A A A A A

http://allegrograph.com/
http://allegrograph.com/
http://www.franz.com/agraph/allegrograph/

GraphDB™

m GraphDB™ (formerly OWLIM) — An Enterprise Triplestore with
Meaning.

It is a family of commercial RDF storage solutions, provided by Ontotext. There are
three different editions: GraphDB™ Lite, GraphDB™ Standard and GraphDB™

Enterprise.
m Link: http://www.ontotext.com/products/ontotext-graphdb-owlim/

[] GraphDB ™ | jte is a free RDF triplestore that allows you to store up to 100 million triples on a desktop
computer, perform SPARQL 1.1 queries in memory (not using files based indices), and supports reasoning
operations for inferencing.

] GraphDB ™ Standard alows organizations to manage tens of billions of semantic triples on one

commodity server, load and query RDF statements at scale simultaneously, performs querying and reasoning
operations using file based indices, and has optimized performance using “Same As” technology.

O GraphDB ™ Enterprlse has all the features of our Standard Edition with the added advantage that it
has been architected to run on enterprise replication clusters with backup, recovery and failover ensuring you
are always up. “Enterprise” offers industrial strength resilience and linearly scalable parallel query performance
with support for load-balancing across any number of servers.

http://www.ontotext.com/products/ontotext-graphdb-owlim/
http://www.ontotext.com/products/ontotext-graphdb-owlim/
http://www.ontotext.com/products/ontotext-graphdb-owlim/
http://www.ontotext.com/products/ontotext-graphdb-owlim/
http://www.ontotext.com/products/ontotext-graphdb-owlim/

Neodj Graph Database

m Neodj is a highly scalable, robust (fully ACID) native graph database,
used in mission-critical apps by thousands of leading startups,
enterprises, and governments around the world.

— High Performance for highly connected
data

— High Availability clustering

— Cypher, a graph query language

— ETL, easy import with Cypher LOAD
CSV

— Hot Backups and Advanced Monitoring 2 .

acge

gggc

B Link: http://neo4j.com/

http://neo4j.com/

PROMINENT RESEARCH SOLUTIONS

URI

RDE Data Model

Prefix: y= http://en.wikipedia.org/wiki/

Subject Predict Object
y:Abraham Lincoln hasName * Abraham Lincoln™
y:Abraham Lincoln BornOnDate “1809-02-127
y:Abraham Lincoln DiedOnDate 1865-04-15
y:Abraham Lincoln DiedIn yv:Washington D.C
y:Washington D.C hasName “Washington D.C.”
yv:Washington D.C FoundYear 1790
y:Washington D.C rdf:type yicity

y:United States hasName “ Llnited States”
y:United States hasCapital yv:Washington D.C
y:United States rdf:type Country
y:Reese Witherspoon rdf:type y:Actor
y:Reese Witherspoon BornOnDate “1976-03-22"
y:Reese Witherspoon Bornln y:New Orleans, Louisiana
y:Reese Witherspoon hasName “ReeseWitherspoon”
y:New Orleans, Louisiana | FoundYear 1718
y:New Orleans, Louisiana rdf:type y:City
y:New Orleans, Louisiana locatedIn y:United States

50

S

Literals

/ URI

http://en.wikipedia.org/wiki/Abraham_Lincoln
http://en.wikipedia.org/wiki/Washington_D.C.

“ Abraham Lincoln”

RDF Graph

009 . Literal Vertex

Entity Vertex

\Wma D03
http://en.wikipedia.org/wiki/

BornOnDate

Abraham Lincoln

/ N

http://en.wikipedia.org/wiki/

010 é,,/”

“1809-02-12” Diem)‘ e
5 iedOnDate S i
. " http://en.wikipedia.org/wiki/
1865-04-15 Washington D.C. rdftvpe
rdfity . E
/Hﬁld‘fe hagCapital
::“:'ﬁ i = ﬂ 1 2
http://en.wikipedia.org/wiki/ 1790 hasName 003
City 013 http://en.wikipedia.org/wiki/
“Washington D.C." United States

“1976-03-22" 001

007

0 oG s hitp/en.wikipedia org/wikiT N JTdfyPe
ot e ReeseWitherspoon \ locagedIn hagName
Y
ﬁ’:t}rpe Romin o

http://en.wikipedia.org/wiki/
Actor

hisName

http://en.wikipedia.org/wiki/
New_Orleans, Louisiana

" Reese Witherspoon
016

51

,, FoundYe
“1718” 017 “United States”

J 014

SPARQL Queries

Query Graph

“1865-04-15"

BornOnDiate DiedOnDate

52

Subgraph Match vs.

“ Abraham Lincoln”™

()5

1asName
http://en.wikipedia.org/wiki/

BornOnDate

OGN -

Abraham Lincoln

SPARQL Queries

“1809-02-12"

iedOnDate

“1865-04-15"

df:t
D06

Diem;

http://en.wikipedia.org/wiki/
Washington D.C.

City

http://en.wikipedia.org/wiki/

‘e I ?90 3

“1976-03-22" 001

i---_"“ -flen.wiki 14, 412 T
BornOnDate hitp://en w'k’If'Ed‘ﬂ org/wiki/
Rﬂﬂsnﬁ?wltherspggn
007 rdf:type

hasName

“Washington D.C."

006
http://en.wikipedia.org/wiki/
Country

IE 5
rdf:type
hagCapital
003

United States

http://en.wikipedia.org/wiky/

http://en.wikipedia.org/wiki/
Actor

hisName

http://en.wikipedia.org/wiki/
New Orleans, Louisiana

“ Reese Witherspoon

53

,, FoundYe
“1718"

hasName

rdf:type
locajedIn
B® 002

A 4
“United States”

Naive Triple Store

Prefix: y= http://en.wikipedia.org/wiki/

Subject Predict Object
y:Abraham Lincoln hasName * Abraham Lincoln”
y:Abraham Lincoln BornOnDate “1809-02-12"
y:Abraham Lincoln DiedOnDate 1865-04-15
y:Abraham Lincoln DiedIn yv:Washington D.C
y:Washington D.C hasName “Washington D.C.”
y:Washington D.C FoundY ear 1790
y:Washington D.C rdf:type yicity

y:United States hasName “United States”
y:United States hasCapital y:Washington D.C
y:United States rdf:type Country
yv:Reese Witherspoon rdf:type y:Actor
y:Reese Witherspoon BornOnDate “1976-03-22"
yv:Reese Witherspoon Bornln y:New Orleans, Louisiana
y:Reese Witherspoon hasName “ReeseWitherspoon”
y:New Orleans, Louisiana | FoundYear 1718
y:New Orleans, Louisiana rdf:type y:city
y:New Orleans, Louisiana locatedIn y:United States

54

T3. subject

RDBMS-based engines

» Naive triple table
> 3 columns: subject-predicate-object
- Tox SPARQL epwtnuTX HETXPpXTovTl o€ SQL
> A€V EXEL KXAN XTTOOO0O0T] YLX MEYXAX EPWTNHXTX XPOU XTTXLTEL
TNV EKTEAEOT TTOAAWV self-join.

> H 1TpO0oBXON OTOV TILVXKX OEV MTTOPEL VX YLVEL XTTOOOTLKX YLX
OAX Tx TTLOxvx triple queries.

Sub ject Predicate Object
:Studentl :type :Student
:Student2 :takesCourse :Coursel

:Profl : teacherOf :Coursel

:Profl :type :Professor

55

RDBMS-based engines

» [Carroll et al. 2004]
> A€V UTTXPXOLV TTOAAX OLXPOPETLKX predicate

> AnNMLOLPYLX EVOC TTIVXKX YL kKxO€e predicate, ye dvo
columns subject-object

> TxtplxCeL ue column stores yLxXTL OL TILVXKEC EXOULV
uovo 2 columns (SW-store [Abadi et al. 2009]) kot
MTTOPEL VX YLVEL vertical partitioning

> A€V TTPOTPEPOLV XTTOOOTLKN EVPECT TWV OEDOUEVWIV
vlx kxOe triple query:

- TTwg BPLOKOUVME OEOOMEVX YL query ME METXPBANTN
oTo predicate?
o ANMLOLPYLX TTOAAWYV TTLVXKWV.

56

Vertically Partitioned Solution

Prefix: y= http://en.wikipedia.org/wiki/

hasName FoundYear
Subject Object Subject Object
yv:Abraham Lincoln “Abraham Lincoln”™ y:Washington D.C 1790

v:Washington D.C

“ Washington D.C. 7

‘ y:New Orleans, Louisiana 1718
y:Reese Witherspoon | * ReeseWitherspoon™
y:United States “United States” rdf:type
BornOnDate Subject Object
y:Washington D.C y:city
Subject Object y:United States Country
y:Ahraham_Lincn]n “1809-02-12" y: Reese_Witherspgg n i Actor
y:Reese Witherspoon “1976-03-227 y:New Orleans, Louisiana yicity
DiedOnDate Boraln
Subject Object Subject Object
v:Abraham Lincoln | “1865-04-15" y:Reese Witherspoon | y:New Orleans, Louisiana
DiedIn LocatedIn
Subject Object Subject Object

y:Abraham Lincoln

yv:Washington D.C

y:New Orleans, Louisiana

y:United States

Property Table

Prefix: y= http://en.wikipedia.org/wiki/

People

Subject hasName BornOnDate | DiedOnDate DiedIn Bornln rdf:type
y:Abraham Lincoln “ Abraham Lincoln™ 1809-02-12 1865-04-15 | y:Washington D.C
y:Reese Witherspoon | “ReeseWitherspoon” 1976-03-22 y:Washington D.C| y:New Orleans, Louisiana| y:Actor
City

Subject FoundYear | rdfitype locatedIn hasName

y:New Orleans, Louisiana 1718 yicity | y:United States

y:Washington D.C 1790 y:city | y:United States | “Washington D.C.”
Country

Subject hasName hasCapital rdfitype
y:United States | “United States” y:Washington D.C Country

58

RDBMS-based engines

» Type-oriented
o 'Evg TTivaikeg Yux kexOe RDF type
. T.X. AlXPOPETLKOL TILVHKEC YLX students k&L universities.
> O KXOE TTIVXKXC EXEL OLXPOPETLKX columns XVXAOYX UE TO TL
ELOOUC OEOOMEVX LTTXPXOULV
> TTwc¢ Bplokovue To schema?
. Me graph coloring Ttaxvw oto Ypxdo Touv dataset [Bornea et al. 201 3]

. Me lattice structures [Wang et al. 2010]

. Me Baxon T characteristic sets (predicates TTOU ElVXL KOLVX YLKX
TTOAAX subjects) [Pham et al. 2015]

> Online adaptivity oto schema?

59

Native RDF indexing

» Hexastore [Weiss et al. 2008]

o Kpxtoxpne oA Tox sorted permutations Twv triples

- SPO, SOP, PSO, POS, OSP, OPS

- 'OANX TX query patterns JTTOpPOUV VX XTTXVTNOOULV UE EVX
Index scan

o 'OAX TX XPXLKKX jOoin MTTOPOLV VX YLVOUV ME XTTOOOTLKX
merge-joins

> TTo axkptBax hash n sort-merge joins xpelxCovrxL MOVO OTXV
KXVOULME join non-ordered intermediate results

60

Five—fold Increase in Index Space

e Sharing The Same Terminal Lists

e SPO-PSO, SOP-0SP, POS-0PS

j11 i \:' in
oy oy Oy
il i
o o5 o

O

Figure 2: spo indexing in a Hexastore

e The key of each of the three resources in a triple appears in two

headers and two vectors, but only in one list

Native RDF indexing

Query pattern
Index

Sub ject Predicate Object
- B - OAX
N N pos, ops
B B 0Sp, SOp
N N Spo, PSO
B 0Sp, OPS
- ? ? Spo, SOp
B 2 poOS, pso
? ? ? OAX

» RDF-3X [Neumann et al. 2008]

> 6 indexes, aggregated indexes ylX OTXTLOTLKX KXL EDPEDCN
TOU BEATLOTOUL TTAXVOU EKTEAECNC

- Aggressive compression

62

Native RDF indexing

» BitMat [Atre et al. 2008]

- BA€TreL Txx RDF oxv evax 3D cube
- ATToOnkeveL compressed bit matrixes

> AVTL YLX join EKTEANEL EVX Semi—join plan TTOL OUCLXOTLKX
ELVXL OV ULX OELPX XTTO TTOAAXTIAXCLXOMOULC TTLVXKWV

- To semi-join processing UTTOPEL VXX XTTXVTNOEL XKPLRWC YLX
EPWTNHMXTX HE OEVOPLKN OOMN

o NlX EPWTNMXTX ME KUKAOULC O€EV EEXTPXALTEL TTIANPEC
reduction TWV XTTOTEAETUXTWV

Sha_malrix relmassdl-
S e loor | oelaniadin
Sha_malrix arilar i
“ha_fulsent*_loor | semdar_ e
Sha_malrix it
he hulsent loor | nfshra

63

Graph indexing

» GRIN index [Udrea et al. 2007]

- EUpeon kevtpwv TOoL RDF ypoidou
> AVXBEON TWV KEVTPWV OE OEVOPLKN OLXTXEN
- Data pruning peE BXON TLC EKTIMWMEVEC XTTOOTXOELC

ROOT

Center:
Norfolk
Distance: 2

Center:
Charlie’s
Distance: 2

)

(Charlie's. location,
15/06) Norfolk)

USA) FastFood)
(Review #16472, rating, 8)

(Arby’s, cuisine, FastFood)

[(Heuiew#mm,date, 12/ [{Lincnln,lncatedln,NE!J [(DairyQueen, cuisine, }

(Grivanti, cuisine, Italian) (Review #21765, date, 11/ } Y
(Grivanti, attire, 08/03) . (Coldstone , cuisine,
businessCasual) (Review #21765, rating, 6) [(Fazoll, attire, casual) J [Dessert)

64

Graph indexing

» Summary based index [Tran and Ladwig 2010]

> [evikevon Tov RDF ypaxdov ue poxon to forward-backward
bisimulation

AuthorOf

RDF graph Summary graph

65

Graph indexing

» Summary based index:

» To SPARQL epwTNUX YLVETXL TTPWTX Match TToevw

oTOoV summary graph

> AUTO OLELKOAUVEL TNV MELWON TWV OEDOMEVWYV TTOU
XPELXTETHL VX ECETXOOVME

- Reduction oxt povo pe Bxon To triple query AN kot ue Boxon
To neighborhood structure Twv KopBwv

> Tradeoff HETXEL summary size-summary pruning capabilities

66

Graph indexing

» Xpnon exAyoplOuwyv subgraph isomorphism [Kim et al. 2015]
> Turboiso, GADDI, VF2
MeTxoxnuatiopocg Tov SPARQL query TtpoBANUXTOC O€
subgraph isomorphism
Turboiso —> Turbonom+ +
Type-aware transformation ylx PEATLWON TNC XTTOO00NC TWV
EPWTNUARTWYV
Numa-aware TTXpXAANAOTTOLNON

o

0]

(0]

o)

67

Distributed systems

» Centralized systems:
> ATTOOOTLKN EKTEAEON MLKpWV-selective epwTNUXTWYV
> MeyXAn eExpTtnon 1o 1o yeyeboc tng RAM
> TTeEpLOPLOPEVN TTIXPXAANAOTTOLNOT YLX OUOKOAX, non-selective
EPWTNMXTX
» Distributed systems:
o AltxxelpilCovtat RDF dataset peycxAov oykou
o EKMETOXAAEVLOVTXL TLC VEEC cloud LTTOOOMEC
> XpNOLUOTIOLOUV TLC VEEC TEXVOAOYLEC TwV No-SQL Baroewv
OEdOMEVWYV KL Tou MapReduce

W £ Windows Azure
=S Google
. HEHEE b
Cassandra <,
amazon

webservices™

