Distributed RDF Datastores

Dimitrios Tsoumakos

Some slides taken from :

.Distributed Big Graph Management Methods and Systems, N. Papailiou

-Hexastore: Sextuple Indexing for Semantic Web Data Management, C.
Weiss, P. Karras, et al

Matrix “Bit” loaded: A Scalable Lightweight Join Query Processor for
RDF Data, Medha Atre, et al

REMINDER: IMPORTANT NATIVE-INDEXING
DATASTORES

Native RDF indexing - Hexastore

» Hexastore [Weiss et al. 2008]

o Kpxtotne oA Tox sorted permutations Twv triples

- SPO, SOP, PSO, POS, OSP, OPS

- 'OANX TX query patterns JTTOpoOUV VX XTTXVTNOOULV UE EVX
Index scan

o 'OAX TX XPXLKKX join MTTOPOLV VX YLVOUV ME XTTOOOTLKX
merge-joins

> TTo axkptpax hash n sort-merge joins xpelxCovrxL HOVO OTXV
KXVOULME join non-ordered intermediate results

Hexastore: Sextuple Indexing

@@ :
e @ @
@ 0
58
@ Y g
@ ° :

@

Five-fold Increase in Index Space

* Sharing The Same Terminal Lists
— SPO-PSO, SOP-OSP, POS-OPS

i
[P P P,]
= - - '._""_\
il i.2 ing
4 Oy 4
F | i in
o 05 o5
r_}f.n_.-
kr'.rz.-
|
or’.l
h_ "i".l.l
i.2
o
b, k.".ﬁ /

Figure 2: spo indexing in a Hexastore

— The key of each of the three resources in a triple appears in
two headers and two vectors, but only in one list

Center for E-Business Technology IDS Lab. Seminar — 5/20

Mapping Dictionary
Replacing all literals by unique IDs using a mapping dictionary

S P O
object214 | hasColor blue
object214 | belongsTo | object352

S P O ID Value
0 1 2 0 object214
0 3 4 1 hasColor

— Mapping dictionary compresses the triple store
* Reduced redundancy, Saving a lot of physical space

— We can concentrate on a logical index structure rather than the physical storage
design

Clustered B*-Tree (RDF-3X, VLDB 2008)

s | P | o

) - I
0 1 5 Actually, we don’t need this table!
0 3 4

e Store everything in a clustered B*-Tree

— Triples are sorted in lexicographical order

* Allowing the conversion of SPARQL patterns into range scan

— We don't have to do entire table scan «<Mapping Dictionary>

m H ID Value

0 object214
1 hasColor

Center for E-Business Technology IDS Lab. Seminar — 7/20

Native RDF indexing — RDF3X

Query pattern
Index

Sub ject Predicate Object
- B - OAX
N N pos, ops
B B 0Sp, SOp
B B Spo, PSO
B 0Sp, OPS
- ? ? Spo, SOp
B 2 poOS, pso
? ? ? OAX

» RDF-3X [Neumann et al. 2008]

> 6 indexes, aggregated indexes yLX OTXTLOTLKX KXL EUPECN
TOU BEATLOTOUL TTAXVOUL EKTEAEONC

- Aggressive compression

BIG DATA, MODERN DISTRIBUTED COMPUTE
ENGINES AND NOSQL DATABASES OVERVIEW

Google

(5/2014)

10K nodes,
150 PB

4 Hadoop
150K cores,

ehY
(4/2014)

300 PB data in Hive +
600 TB/day (4/2014)

facebook

S3: 2T objects, 1. 1M
request/second (4/2013)

amazon
web services™

ewae2 040K ought to be

%?4 enough for

<N =
———

i Hadoop: 365 PB, 330K
AHOO nid(e)(s)p(6/2014)

Processes 20 PB a day (2008)
Crawls 20B web pages a day (2012)
Search index is 100+ PB (5/2014)
Bigtable serves 2+ EB, 600M QPS

400B pages,
10+ PB
(2/2014)

JPMorganChase ()

150 PB on H0k+ servers
running 15k apps (6/2011)

LHC:

15 PB a year

| LSST: 6-10 PB a year
(72020)

SKA: 0.3 — 1.5 EB
per vear (2020)

How much data?

No data like more data!

s/knowledge/datalg;
1.00 4
0.95 - 0.44 e
+0.51 BPfx2 RO
,ma' +0.15BP/2
0.90 - D42 i ¥ +0.39BPK2 1
> - +0. 5GBPI}{2#
o L
E I:I_:II 04 F /KrJ |
3 ' '0.70BP/x2
0 0.85 4 0
o 0.85 E _/'ﬂ'
u + 0.38 -+0.62BP/x2 .
o 0] Pa target KN ——
I =
0.80 - < +ldcnews KN ———
0.36 | // e +webnews KN % -
/;, target SB -—-=-—
~~ T0.66BP/x2 +ldchews SB -—=—
0.75 4 0.34 +twebnews SB —ua ===
+web SByCe-- [T\
! 1 L | 1 1 | ! 1 | 1 1 L | 1 ! | \
_ 10 100 1000 10000 ‘IDDDDQ‘ let06)
07 ' LM training data size in million tokens'§, ,ﬂ
0.1 1 10 o Toww ~ —
Millions of Words -

How do we get here if we’re not Google?

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

What is cloud computing?

Just a buzzword?

o Before clouds...

e P2P computing
e Grids
e HPC

o Cloud computing means many different things:

Large-data processing
Rebranding of web 2.0
Utility computing
Everything as a service

Rebranding of web 2.0

o Rich, interactive web applications

e Clouds refer to the servers that run them
e AJAX as the de facto standard (for better or worse)
e Examples: Facebook, YouTube, Gmail, ...

o “The network is the computer”: take two

e User data is stored “in the clouds”
e Rise of the netbook, smartphones, etc.
e Browser is the OS

Utility Computing
o What?

e Computing resources as a metered service (“pay as you go”)
e Ability to dynamically provision virtual machines

o Why?
e Cost: capital vs. operating expenses

e Scalability: “infinite” capacity
e Elasticity: scale up or down on demand

o Does it make sense?

e Benefits to cloud users
e Business case for cloud providers

I think there is a
world market for
about five computers.

Enabling Technology: Virtualization

App App App 0S 0S 0S
Operating System [Hypervisor]
Hardware Hardware

Traditional Stack Virtualized Stack

Cloud computing market

Software as a service

Everything is a service

Platform as a service

Infrastructure as a service

Hardware provider

Everything as a Service

o Utility computing = Infrastructure as a Service (laaS)

e Why buy machines when you can rent cycles?
e Examples: Amazon’s EC2, Rackspace

o Platform as a Service (PaaS)

e Give me nice APl and take care of the maintenance, upgrades, ...
e Example: Google App Engine

o Software as a Service (SaaS)

e Just run it for me!
e Example: Gmail, Salesforce

Building Blocks

Source: Barroso and Urs Holzle (2009)

-
g -

Storage Hierarchy

One Server

DRAM: 16 GB, 100 ns, 20 GB/s
Disk: 2T B, 10 ms, 200 MB/s
Flash: 128 GB, 100 us, 1 GB/s

Local Rack (80 servers)
DRAM: 1TB, 300 us, 100 MB/s
Disk: 160TB, 11 ms, 100 MB/s

A
":I%—-;w Flash: 20TB, 400 us, 100 MB/s
A

Cluster (30 racks)

DRAM: 30TB, 500 us, 10 MB/s

Disk: 4.80PB, 12 ms, 10 MB/s
M= Flash: 600 TB, 600 us, 10 MB/s

Source: Barroso and Urs Holzle (2013)

How do we scale up?

Divide and Conquer

W,

i

“‘worker”

'

ry

N\

“Work?”

w,

“‘worker”

'

r;

|

“Result”

N

“‘worker”

/

W3

'

rs

Partition

Combine

Parallelization Challenges

o How do we assign work units to workers?

o What if we have more work units than workers?
o What if workers need to share partial results?
o How do we aggregate partial results?

o How do we know all the workers have finished?
o What if workers die?

What is the common theme of all of these problems?

Synchronization!

o Parallelization problems arise from:

e Communication between workers (e.g., to exchange state)
e Access to shared resources (e.g., data)

o Thus, we need a synchronization mechanism

Managing Multiple Workers

o Difficult because

e We don’t know the order in which workers run
e We don’'t know when workers interrupt each other
e We don’t know the order in which workers access shared data

o Thus, we need:

e Semaphores (lock, unlock)
e Conditional variables (walit, notify, broadcast)
e Barriers

o Still, lots of problems:

e Deadlock, livelock, race conditions...
e Dining philosophers, sleeping barbers, cigarette smokers...

o Moral of the story: be careful!

“Big Ideas”

o Scale “out”, not “up”

e Limits of SMP and large shared-memory machines

o Move processing to the data
e Cluster have limited bandwidth

o Process data sequentially, avoid random access
e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour

MapReduce

What is MapReduce?

o Programming model for expressing distributed
computations at a massive scale

o Execution framework for organizing and performing such
computations

o Open-source implementation called Hadoop

T_ ajala/a)

Typical Large-Data Problem

o lterate over a large number of records
Mﬂﬁxtract something of interest from each

o Shuffle and sort intermediate results

o Aggregate intermediate reS\g\téduce

o Generate final output

Key idea: provide a functional abstraction for
these two operations

(Dean and Ghemawat, OSDI 2004)

Challenges

1.

Cheap nodes fail, especially if you have many

e Mean time between failures for 1 node = 3 years
e Mean time between failures for 1000 nodes = 1 day
e Solution: Build fault-tolerance into system

Commodity network = low bandwidth

e Solution: Push computation to the data

Programming distributed systems is hard

e Solution: Data-parallel programming model: users write “map” &
“reduce” functions, system distributes work and handles faults

MapReduce

o Programmers specify two functions:

map (k, v) — <k’, v’>*
reduce (K, V') — <k”, v’>*
e All values with the same key are reduced together

o The execution framework handles everything else...

o Not quite...usually, programmers also specify:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic

map map map map

l l l l

B0 @PE:) @A Bl

Shuffle and Sort: aggregate values by keys

ﬂ15 ﬂ27 2368

R .

reduce reduce reduce

l l l

map

l l l l

B o il [

combine combine combine combine

l l l l

B B B HBH5H2 Nl

partition partition partition partition

Shuffle and Sort: aggregate values by keys

E 115 n 217 2]9]88
reduce reduce reduce

l
r i

l

. O

i, B

l

MapReduce “Runtime”

o Handles scheduling
e Assigns workers to map and reduce tasks

o Handles “data distribution”
e Moves processes to data

o Handles synchronization
e Gathers, sorts, and shuffles intermediate data

o Handles errors and faults
e Detects worker failures and restarts

o Everything happens on top of a distributed FS

Two more details...

o Barrier between map and reduce phases

e But we can begin copying intermediate data earlier

o Keys arrive at each reducer in sorted order

e No enforced ordering across reducers

MapReduce Execution

o Single master controls job execution on multiple slaves

o Mappers preferentially placed on same node or same rack
as their input block

e Minimizes network usage

o Mappers save outputs to local disk before serving them to
reducers

e Allows recovery if a reducer crashes
e Allows having more reducers than nodes

User
Program

1 (1) submit

s ~
-’
P ~

(2) schedule map (2) s¢hedule reduce

e
7

7

A&

worker >
Sp::? (6) write [output
Spli > .
i ; (3) read _ file O
split 2 (4) local write ‘
split 3]
split 4 ,| output
file 1
worker >
Input Map Intermediate files Reduce Output
files phase (on local disk) phase files

Adapted from (Dean and Ghemawat, OSDI 2004)

Word Count Execution

Shuffle & Sort

Input Map
ﬁ the, 1
. brown, 1
the quick M
brown fox [ap
the fox ate
—>‘ Ma
the mouse P
| how, 1
now, 1
brown, 1
how now M
brown cow { ap

ate, 1
mouse, 1

Reduce

Reduce }——»

Reduce }——*

Output

[4
brown, 2
fox, 2
how, 1

now, 1
the, 3

ate, 1
cow, 1
mouse, 1

quick, 1

Word Count with Combiner

Input

A

the quick

brown fox

the fox ate
the mouse

how now

brown cow

Map & Combine Shuffle & Sort

the, 1
brown, 1

brown, 1

how, 1
now, 1

Reduce

Output

A

Reduce}———+

mouse, 1

Reduce}———*

brown, 2
fox, 2
how, 1
how, 1
the, 3

ate, 1
cow, 1
mouse, 1

quick, 1

Inverted Index Example

o Input: (filename, text) records

o Output: list of files containing each word

o Map:
foreach word in text.split():
output(word, filename)

o Combine: uniquify filenames for each word

o Reduce:
def reduce(word, filenames):
output(word, sort(filenames))

Inverted Index Example

“hamlet. txt to, hamlet txt
to be or not be, hamlet.txt A
to be " or, hamlet.txt \ afraid, (12th.txt)
not, hamlet.txt be, (12th.txt, hamlet.txt)

greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
A 124h txt be, 12th.txt A or, (hamlet.txt)
not, 12th.txt to, (hamlet.txt)

benot — __, qfraid, 12th.txt
“fm;d of of, 12th.txt
gredainess greatness, 12th. txt

Hadoop Components

o Distributed file system (HDFS)

e Single namespace for entire cluster
e Replicates data 3x for fault-tolerance

o MapReduce framework

e EXxecutes user jobs specified as “map” and “reduce”
functions

e Manages work distribution & fault-tolerance

Hadoop Distributed File System

o Files split into 64MB blocks

Namenode
o Blocks replicated across several

datanodes (usually 3) d "°

o Single namenode stores metadata
(file names, block locations, etc)

o Optimized for large files,
sequential reads

o Files are append-only

Datanodes

4
=
£

Ty
-
-
-
—
=
-
=

!
v
=
L
H
=
-
b]
=
-
r

fifeser Elenpe

Sequoia

16. 32 PFLOPS S :
.98, 304 nodes, with 1, 572 864fﬁ11110n
1.6 petabytes of memgry &

7.9 MWatts total:»ower

Introduction to NoSQL,
HBase

Material adapted from slides by :
Perry Hoekstra and Gary Dusbabek(Rackspace)
CS 525 Indranil Gupta

SQL

* Specialized data structures (think B-trees)

— Shines with complicated queries

* Focus on fast query & analysis

— Not necessarily on large datasets
Microsoft® ﬁ\“* m PostgreSQL
SQL Server My
ORACLE

Scaling Up

Issues with scaling up when the dataset is just
too big

RDBMS were not designed to be distributed

Began to look at multi-node database
solutions

Known as ‘scaling out’ or ‘horizontal scaling’
Different approaches include:

— Master-slave
— Sharding

What is NoSQL?

Stands for Not Only SQL
Class of non-relational data storage systems

Usually do not require a fixed table schema
nor do they use the concept of joins

All NoSQL offerings relax one or more of the
ACID properties (will talk about the CAP
theorem)

How did we get here?

Explosion of social media sites (Facebook,
Twitter) with large data needs

Rise of cloud-based solutions such as
Amazon S3 (simple storage solution)

Just as moving to dynamically-typed
languages (Ruby/Groovy), a shift to
dynamically-typed data with frequent
schema changes

Open-source community

More Programming and Less Database
Design

Alternative to traditional relational DBMS

Flexible schema
Quicker/cheaper to set up

Massive scalability

+ + + +

Relaxed consistency — higher performance
& availability

— No declarative query language — more
programming

— Relaxed consistency — fewer guarantees

Challenge: Coordination

 The solution to availability and scalability is to decentralize
and replicate functions and data...but how do we
coordinate the nodes?

— data consistency

— update propagation AL Cassandia
— mutual exclusion

— consistent global states ‘]“F)‘ q.l
— group membership

— group communication CouchDB

— event ordering
— distributed consensus wriak

— guorum consensus

mnngnDE

Dynamo and BigTable

* Three major papers were the seeds of the
NoSQL movement
— BigTable (Google)
— Dynamo (Amazon)
* Gossip protocol (discovery and error detection)
* Distributed key-value data store
* Eventual consistency

— CAP Theorem

CAP Theorem

* Proposed by Eric Brewer (Berkeley)
* Subsequently proved by Gilbert and Lynch

* |n a distributed system you can satisfy at most

2 out of the 3 guarantees
1. Consistency: all nodes have same data at any
time
2. Availability: the system allows operations all the
time
3. Partition-tolerance: the system continues to work
in spite of network partitions

Consistency

Fox&Brewer ‘CAP Theorem C
C-A-P: choose two.

Claim: every distributed

system is on one side of
the triangle.

CP: always consistent, even in a
partition, but a reachable replica
may deny service without
agreement of the others (e.qg.,
quorum).

CA: available, and
consistent, unless there is
a partition.

A AP: a reachable replica P
Availability provides service even in a Partition-resilience
partition, but may be

inconsistent if there is a
54 failure.

Availability

* Traditionally, thought of as the server/process
available five 9’s (99.999 %).

* However, for large node system, at almost any
point in time there’s a good chance that a
node is either down or there is a network
disruption among the nodes.

— Want a system that is resilient in the face of
network disruption

Consistency Model

* A consistency model determines rules for visibility and apparent
order of updates.
* For example:
— Row X is replicated on nodes M and N
— Client A writes row X to node N
— Some period of time t elapses.
— Client B reads row X from node M
— Does client B see the write from client A?
— Consistency is a continuum with tradeoffs
— For NoSQL, the answer would be: maybe

— CAP Theorem states: Strict Consistency can't be achieved at the same
time as availability and partition-tolerance.

Eventual Consistency

* When no updates occur for a long period of time,
eventually all updates will propagate through the
system and all the nodes will be consistent

* For a given accepted update and a given node,
eventually either the update reaches the node or the
node is removed from service

 Known as BASE (Basically Available, Soft state,

Eventual consistency), as opposed to ACID
— Soft state: copies of a data item may be inconsistent

— Eventually Consistent — copies becomes consistent at some
later time if there are no more updates to that data item

— Basically Available — possibilities of faults but not a fault of
the whole system

Size

NoSQL Categories

Key-Value
Stores
Column
. Families
. Document
Databases
. Graph

Databases

Complexity

>

Categories of NoSQL databases

 Key-value stores

* Column NoSQL databases

* Document-based

 Graph database (neo4j, InfoGrid)

e XML databases (myXMLDB, Tamino, Sedna)

Key/Value

Pros:

— very fast

— very scalable

— simple model|

— able to distribute horizontally

Cons:

- many data structures (objects) can't be easily
modeled as key value pairs

Schema-Less

Pros:
- Schema-less data model is richer than key/value
pairs
- eventual consistency
- many are distributed
- still provide excellent performance and scalability

Cons:

- typically no ACID transactions or joins

Common Advantages

Cheap, easy to implement (open source)

Data are replicated to multiple nodes (therefore
identical and fault-tolerant) and can be

partitioned

— Down nodes easily replaced
— No single point of failure

Easy to distribute

Don't require a schema

Can scale up and down

Relax the data consistency requirement (CAP)

Typical NoSQL API

e Basic API access:

— get(key) -- Extract the value given a key

— put(key, value) -- Create or update the value given its key
— delete(key) -- Remove the key and its associated value

— execute(key, operation, parameters) -- Invoke an operation
to the value (given its key) which is a special data structure
(e.g. List, Set, Map etc).

What am | giving up?

joins

group by

order by

ACID transactions

SQL as a sometimes frustrating but still powerful
guery language

easy integration with other applications that support
SQL

Memcached GigaSpaces

GridGain

Data grid

Oracle Coherence

Columnar
WebSphere eXtreme Scale

Cassandra

Accumulo
Hypertable

GlusterFS

Distributed file s stems

RavenDB

ScaleBase

CouchDB
Amazon RDS

VoltDB

Apache Solr

Aster Data

COl umnar Microsoft PDW

ParAccel

Jndexing

SAP HANA

HP Vertica Oracle Exadata

IBM Netezza
EMC Greenplum

An Introduction to Hadoop HBase

HBase Is ...

* A distributed data store that can scale horizontally to
1,000s of commodity servers and petabytes of
indexed storage.

* Designed to operate on top of the Hadoop
distributed file system (HDFS) or Kosmos File System
(KFS, aka Cloudstore) for scalability, fault tolerance,
and high availability.

Benefits

Distributed storage
Table-like in data structure

— multi-dimensional map
High scalability

High availability

High performance

Data Model

 Tables are sorted by Row

 Table schema: column families

— Each family consists of any number of columns

— Each column consists of any number of versions

— Columns only exist when inserted, NULLs are free.

— Columns within a family are sorted and stored together

* Everything except table names are byte[]
* (Row, Family: Column, Timestamp) = Value

"contents:” "anchor:cnnsi.com”™ "anchor:my.look.ca”

| I | | | T T | I
| * | | * j ; * |

ISR, PURPVRPPRUN. . o DO | NI PRSP, P C PPV & SOSUIN P SR | o PP 0 s PRSI
| I Y i | : : |
I TITUTTA L |y [-

"com.cnn.www” - Mg "CNMN" = ty "CNMN.com” [=— tg

<. Pl i

[|
|

Architecture
| Zookeeper ’:":.

——-.

HRegionServer 1 HRegionServer

(.
HRegion

. ~
Store MemStore (Store MemStore

StoreFile StoreFile . StoreFile
— HFile ' HFile

h
HRegion
R Ty
(Store Store

StoreFile StoreFile . StoreFile
HFile HFile HFile

[T T AT e e T T o= T

- 0 | oooooo Poooc . C
5 00000 C =

DataNode DataNode DataNode DataNode DataNode

/—Hhaﬁﬂ cluster

AReQION (-Ragiun saver f— Maser Direct Usage
Row 1 4 Region node
Row 2 Region 2 T R :
HD’H:‘! Rma + eglmi |' egmql g Egm? f A Thrift 'GETE\'I'Q']’
Row4 Region 4 S
Row 5 Region 5 (Regon Sever| [Region Server | [RegonSenver] | €
Row 6 Region b ¢ 2 : A
Row 7 Region 7 p REST Galeway
. "Region Server | [Region Server | [Region Server |
Row 8 Region8 3 f g |
Row 9 Region 9
1 Row 10 Region 10 Pig (futur)
Jig_ Y y. \ o
/—Ro.v 10 \
‘ants:' 'ancrm:‘ﬁxar.mm' 'm'adm:TIsmtl ca
| 1 ! |
| l | l | l |
——pmmm————- i s v i JI. --------------
| I — |
: f Wi ‘| “Ecole de technologie »
Dl'g.hhﬂﬂ.m——" : * [Livar * | mpéﬂgurg' ‘:I
L i A e— j S— -
| I T T
| | | |
| I | |
| l I I
_ j

HFile

| Magic | K€Y | Key [Key | Key | Key Key |
9 Value | Value | Value | Value | Value | Value

~~
-
-
-
-~
-~
-
-
-~
-
-
-~
-~
-
-~
-~
-
-
-~
-
-
-~
-
-
-
-
-
-~

-
-
-

(For a census table example)

~

-
-
-
M -~
-~
S=a
-
! c -~
-
-
= = ~~a
- - = = = =

Column 1
Row | Family
| Length |

Key | Value [Row
Length|Length|Length

Column|Column | Time | Key
Family [Qualifier| Stamp [Type

\/

SSN:000-01-2345
Demographic

Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

MapReduce-based engines

» AtroOnkevon RDF dedouevwy oe oipxetx HDFS
» YAoTrolnon join ue xpnon MapReduce
» AVTLTTPOOWTTEVUTLKX OUOTHMXTX

- SHARD [Rohloff 2010]

- HadoopRDF [Husain 2011]

> PigSPARQL [Schatzle 201 2]

73

» Apxeix HDFS:
o MLX YPOXMME TTEPLEXEL OAEC TLC TPLXOEC TTOU EXOLV EVX
OULYKEKPLUEVO subject
» Query processing
- Left deep join plans

- 'Evax MapReduce job ywx kx8e BGP Tou epwtnuXTOC
> MLKPEC DLVXTOTNTEC PIATPXPLOPNXTOC TwV RDF dedouevwyv

File1.rdf

picasso type :cubist :firstName “Pablo” :paints :guernica
guernica :exhibitedIn :reinasofia
reinasofia :locatedIn :madrid

rodin type :sculptor :firstName “Auguste” :creates :thethinker
thethinker :exhibitedIn :museerodin

HDFS

/74

HadoopRDF

» Apxeix HDFS:
> RDF TpLXOEC ONXOOTIOLNMEVEC XVX predicate
- EOWTEPLKN ONXOOTTOLNON TWV XPXELWYV ME BXon TO type TOU
kxO€e object
» Query processing
o ETTiAoyn opxelwv 1Tou ToitpLtxCouv o€ kx0e BGP
o TTOANXTTAX join xvex MapReduce job
> Heuristic join planner

paints type exhibitedIn.rdf

‘ :picasso :guernica l

creates.rdf

:rodin :thethinker J firstName.rdf
:picasso “Pablo” J
/

:rodin :sculptor
:picasso :cubist
:guernica :artifact

thethinker museerodin

locatedln.rdf ™.

:reinasofia madrid

:guernica reinasofia J

:rodin “Auguste”

75

Pig SPARQL

» Apxeix HDFS:
> 'EVOX EVLXXLO XPXELO TTOUL TTEPLEXEL OAX TXx RDF d€edoueve
> XwpLC DLVXTOTNTEC ELPETNPLAONC
» Query processing
- Metxdpxon SPARQL o€ Pig scripts
- EkTeéAeon Twv PIG scripts ue MapReduce jobs

76

NoSQL indexing

» Xpnon key-value store yLx OnMLOLPYLX EVPETNPLWV
- ApLBuOC evpeTnplwyv 1-6
> AvXKTNon d0edopevwy yix BGP:
. Me lookups n range scans
» ETTEEEPYROLX EPWTNUXTWV
> M€ TOTILKN ETTECEPYXOLX
- Me xpnon MapReduce
» AVTLTTPOOWTTEVUTLKX OUOTHMXTX
> Stratustore [Stein 2010]
> Rya [Punnoose 2012]
- H2RDF [Papailiou 2012]
- H2RDF+ [Papailiou 201 3]
MAPSIN [Schatzle 201 2]

o

77

NoSQL indexing

:picasso, : firstName, “Pablo”

SPO
(attribute, value)

:picasso,:

:picasso, ty

POS

(attribute, value)

:exhibitedIn, :reinasofia, :guernica =

:guernica, :

: firstName, “Pablo”, :picasso, -

OSP

:paints, :gu

type, :cubis

Key

:cubist, :picasso, type,

(attribute, value)

:guernica, :picasso, :paints

“Pablo”, :picasso, : firstName

:reinasofia, :guernica, :exhibitedIn

78

v

v

NoSQL indexing

Stratustore (Amazon SimpleDB)
- S|P|O 1 hash index
Rya (Apache Accumulo)

> SPO
H2RD
> SPO
H2RD
> SPO
MAPS
- SPO

-, POS|-, OSP|- 3 sorted indexes
- (Apache HBase)
-, POS|-, OSP|- 3 sorted indexes

-+ (Apache HBase)
-, SOP|-, POS|-, PSO|-, OPS|-, OSP|- 6 sorted indexes
N (Apache HBase)
. OPS|- 2 sorted indexes

79

» ATTOONKELON OEOOUEVWV
- Apache Accumulo
> 3 sorted indexes
> AvXkTnon dedouevwy Pe lookup yix oAx Tx BGP patterns
» ETTEEEPYXROLX EPWTNUXRTWYV
> Index nested loops
- AvxCnTtnon tou accumulo index ywx kx0e kKAELOL TOU join
> ATTOOOTLKO YLX MLKpOUL MEYEBOULC join
o ATTXLTEL TTOAX index lookups ywx non selective epwWTAMXTX

80

» ATTOONKELON OEOOUEVWV
- Apache HBase
> 3 sorted indexes
> AvXkTnon dedouevwy Pe lookup yix oAx Tx BGP patterns
» ETTEEEPYXROLX EPWTNUXRTWYV
> Partial Input Hash joins
o ALXXAEYEL TOV KXTXAANAO join XAYOPLOUO xvxAoyx WE TO MEYEDBOC
0edoMEVWY TwvV BGP

. AV UTTXPXEL ULKPO pattern JOVO XLTO XPNOLUMOTTOLELTXL WC
€ELO0OOC

o Kxtaxveunuevn (MapReduce) i KEVTPLKN EKTEAECN TWV join

81

» ATTOONKELOT OEDOHEVWIV

- Apache HBase

- 6 sorted indexes k&L aggregated satatistics

o ZUMTILEOT) TWV EVPETNPLWV

> AVXKTNON TRELVOUNMEVWY OEDOMEVWYV YLX OAX TX BGP patterns
» ETTECEPYXOLXX EPWTNHXTWV

- AELOTTOLEL TX 6 index yLx TNV ekTEAEON Merge join

> Multi-way Merge kxt Sort—-Merge joins

o Kxtaxveunuevn (MapReduce) j KEVTPLKN EKTEAECN TWV join

> MOVTEAO KOOTOUC YLX TX joins

- EAXOTLKN ETTLAOYN TWV resources

82

» ATTOONKELON OEOOUEVWV

- Apache HBase

- 2 sorted indexes

> AVXKTNON d€doNeEVWYV YL Tt BGP patterns pe yvwoTo predicate
» ETTEEEPYXROLX EPWTNUXRTWYV

- MapReduce map phase join algorithm

- Lookup operations yLx kxO€e KAELOL TOL join

83

Graph partitioning

partition 1 :firstName

. -exhibited |p/_ ‘locatedIn
:guernica / :reinasofia

partition 3

“Pablo”
_—————
:creates Mdln
:thethinker :

partition 2 :firstName partition 4
“Auguste”
AN
— <> > >
~— ~_ . -~
node 1 node 2 node 3 node 4

84

Graph partitioning

» Graph partitioning [Huang et al. 11]
- Graph partitioning ylx olxpeLpxXouo Twv RDF d€edopeEvwy
- KxOe koppoc xpnotpoTtrotel evx RDF-3X yLx Tx OEQOMEVX TOU

OLKOU TOUL graph partition
> n-hop replication scheme

. EKTOC XTTO TX DEDOMEVX TOUL partition Touv 0 KXO€e KOMPOC KXVEL
replicate KL OEQOMEVX TTOU ELVXL EWC N BPAMXTX MXKPLX

- TTKUPXAANNAN EKTEAECN YLK EPWTAUXRTH ME OLXMETPO MLKPOTEPN TOL N

. TX MEYXAUTEPX EPWTAMXTX XWPLCOVTXL OE€ MLKPOTEPX, OLXMETPOUL N

. TX XTTOTEAEOUXTX TWV LDTTOEPWTNMXTWY TLVOLXTOVTXL ME XpNon
MapReduce

85

1-hop guarantee

. :paints | -exhibited |N°°ated'“
:picasso :guernica -reinasofia

artition 1 :firstName partition 3
“‘Pablo” |___
o :creates _ :exhibitedIn _
partition 2 -firstName - i} partition 4__
Auguste” | - undirected
1-hop guarantee
o /_Z D N
~ N~ e N
RDF-3X RDF-3X RDF-3X RDF-3X
~ ~_ ~_ ~_

node 1 node 2 node 3 node 4

replication with
1-hop guarantee

PWOC query

T
]

RDF-3X

~_
partition 1

Graph partitioning

SELECT ?x ?y ?z
WHERE {
?x type

:artist .
?x :firstName ?y
?X :creates ?z .}

~—

RDF-3X

~
partition 2

N’

RDF-3X

-~
partition 3

union results

87

Y
]

RDF-3X

~
partition 4

Results

» DREAM [Hammoud 2015]
o ALXXWPLOPOC OUCTNUXTWY XVXAOYX ME TNV KXTXVOMI TWV
OEOOMEVWYV KXL TNG ETTECEPYNXTLXC
> YAOTTOLNON OLOTNMXTOC TToL xXvNnkel oto Quadrant-1V

Quadrant-I

Quadrant-ll
Quadrant-lll

Quadrant-1V

88

Distributed Main Memory

» Memory cloud: TrinityRDF [Zeng et al. 201 3]

- ATToOnkeveL Tx RDF d€dOMEVX OTNV KUPLX MVAMN OAWV TWV
KOMBwYV Tou cluster
> KatOe kopBoc kpxTaiel evok memory hash-map twv RDF
OEOOMEVWYV TTOL TOU XVTLOTOLXOULV
> Query execution
. Graph exploration g€ NNVOUXTX METREL TWV KOMPBWV
. OUOLXOTLKX KXVEL EVX Semi-join processing yYlx To query
. A€V KXVEL TTANPEC reduction yLX EpPWTAMXTX ME KUKAOUC

. 2T0 TEAOC Tx reduced XTTOTEAEOUXTX MXTEVOVTXL OE EVX KEVTPLKO
server TToU KXVEL TO TEALKO processing

89

Distributed Main Memory

» TriAD [Gurajada 2014]

- Hash partitioning

ATToOnkKeLEL Tt RDF O€EdOPEVX OTNV KUPLX MVAMN OAWV TWV
KOMBWV

6 indexes + aggregated statistics

MPI-based asynchronous join execution

Bxolouevo oto RDF-3X ywx join planning

(0]

o

o

o

90

