IONIAN UNIVERSITY, DEPARTMENT OF INFORMATICS

Modeling and Simulating
Fire Propagation in Forest Landscapes

Author: Athanasios Tsipis
Scientific Coordinator: Markos Avlonitis

June 10, 2016

Modeling fire propagation in a flammable landscape, such as a for-
est, under different weather conditions, is an interesting and challeng-
ing issue, widely studied in past literature. This is mainly due to the
fact that fire is an extremely difficult process to experimentally manipu-
late and recreate, especially at a landscape level. Many approaches have
been proposed over the years to address this problem. One of the most
prominent and successful is based on Cellular Automata. Current work
revolves around the implementation of a fire spreading model, based on
two-dimensional cellular automata and various environmental factors.
The developed model integrates geographic information and variables
found in previous researches, with the goal of adequately predicting
spatial fire behavior, in heterogeneous and non-heterogeneous forest
areas. The results are then being presented in a user-friendly fashion
using simple symbols and tools of representation.

1. INTRODUCTION

Wildfires have always been a major plague for all natural area ecosystems and a sig-
nificant ecological threat, and over the course of many centuries have exerted an ex-
ceptionally important influence on forest landscapes [1]. In fact, it has been calcu-
lated, that each year fires burn between six and fourteen million hectares of forest
ground [2]. Therefore, they have the power to greatly transform forest environments
and alter their systems. Improved understanding of their inner propagation mech-
anisms could aid in discovering new ways of predicting, preventing, ensuring fire
safety and control, and mitigating the risks [3].

However, fires are a difficult process to experimentally predict or recreate at a land-
scape level. Computer simulations can reduce the time it takes to evaluate impacts
generated by their destruction paths, but it requires a deep understanding of the par-
ticular ecosystem dynamics, and enough knowledge about the target environment,
to be able to adequately model fire spatial processes, prior to the event [4].

Fires are the result of complex interactions among a plethora of different nature vari-
ables. These variables vary depending on their field of affect and include, but are
not limited to, weather conditions, such as temperature, humidity or wind velocity
and direction, ignition material, vegetation type, fuel moisture, topography, ground
elevation and altitude, slope, spotting effect, etc., [5], [6].

Although computational tools that help predict fire behavior are still far from perfect
[7], there have been many efforts in modeling fire spread and a number of differ-
ent approaches and mathematical models have been proposed over the years [8], [9].
Many studies are based on deterministic models and are generally composed of a col-
lection of equations, whose solution gives numerical values for the spatial /temporal
evolution of one or more fire variables [10]. Others take advantage of the well known
and regarded semi-empirical model of Rothermel [11], which allows to forecast the
rate of spread and the reaction knowing certain fire properties and landscape condi-
tions [5]. In any case the mathematical models proposed can be classified according
to two approaches [12]:

o Vector models: These models assume that the fire front spreads according to a
well-defined growth law, which evaluates the spacial evolution in relation to
time [2]]. If burning conditions are uniform, then the model takes a single, stan-
dard, geometrical shape that can be easily examined to determine the fire size,
the perimeter over time and the area by using fractals [13]]. Some of these mod-

els go as far as incorporating wave propagation techniques, while employing
mechanisms to determine the temperature fields in sequence to fire growth by
performing turbulent fluid flow calculations [2], [12], [14].

e Cellular Automata: The cellular automata models (henceforth referred to as CA),
tirst introduced by Von Neumann [15] and later detailed by Wolfram [16], have
been successful in modeling complex physical systems and processes. They
have the ability of reproducing complicated phenomenon and representing com-
plex systems, by applying simple rules in a lattice space or grid, where each cell
is in a particular state at a specific moment in time according to the state of its
neighborhood [17], [18]. In other words, CA are mathematical models in which
space and time are discontinuous, and the state factors can take on values from a
finite set, depending on local transitions rules and a small number of neighbors.
The evolution rules can be connected to deterministic or probabilistic functions
of the neighborhood and define the state transitions [5].

Research using the latter technology has been advancing in various fields, including
transportation, economics, chemistry, and engineering [19], [18]. Furthermore, CA
are used extensively in recreating several physical problems, where local interactions
are involved [1], or to better understand dynamic and complicated urban and physi-
cal events, such as plant competition, epidemic propagation and vaccination, habitat
fragmentation, cell reproduction, insect evolution, population growth, plant invasion
and dispersal, disease spread, etc. [17].

The reason behind the popularity of CA can be traced back to their simplicity [12] and
their ability to integrate spatial information and geographic data sets from various
digital sources [17], [20]. Consequently, CA, and in particular 2-dimensional array
(or grid) CA, are considered a suitable tool to model and simulate the behavior of fire
fronts and how they spread in sequence to time.

Karafyllidis and Thnailakis in their work, in 1997, developed a CA model for predict-
ing fire propagation, which was applied to hypothetical landscapes under various
scenarios of weather and topography [1]. Later on, many more researchers adopted
their proposed model in order to further improve on its parameters, customize its
equations to their needs, and come up with alternative solutions to the everlasting fire
problem. One such work refers to the simulation experiment, conducted by Alexan-
dridis, et al., in 2008, regarding the wildfire case that swept through Spetses Island,
in 1990 [21]. An extension to this model was proposed in the work of [22]], where
additional parameters were inserted to the fire propagation equation with the aim

of simulating more accurately the phenomenon. In the work of Quartieri et al., one
more parameter was introduced, fire ignition, which was directly related to the burn-
ing neighbors, fuel topology, wind direction and land slope [12].

Current work revolves around the recreation of the experiments undertaken and de-
scribed in the aforementioned articles. The main goal is to investigate and discover
potential uses of CA in modeling and simulating wildfires in dynamic ecosystems,
like forests. Hence, the rest of the study is organized as follows: In Section 2 we
present the necessary theoretical background involving the CA framework. Section
3 introduces and describes in detail the proposed model and its mathematical con-
cepts, equations, and variables, based mainly on the work of [21]. Section 4 continues
with the presentation of the simulation process and its procured results. It is worth
mentioning, that in order to validate the whole procedure, geographical data found
in the paper of [21] were integrated to the fire model, which was simulated by the
use of the programming language C. Section 5 concludes the research and provides
directions for future thoughts and improvements on the problem and its solution,
respectively.

2. THEORETICAL BACKGROUND ON CELLULAR
AUTOMATA

Any physical system satisfying differential equations may be approximated as a CA
by introducing finite differences and discrete variables [23]. CA, despite their struc-
tural simplicity, can exhibit complex dynamical behavior and are capable of suc-
cessfully representing many processes. From a theoretical point of view, CA are
comprised of four main components, which are analyzed more thoroughly below
[12].

1. The physical environment: This element defines the immediate structure of
"universe" on which the CA is computed. This structure is usually character-
ized by a discrete and uniform n-dimensional lattice (or a grid, or an array) of
cells, which could adopt several different topologies, the most popular being
the rectangular or hexagonal ones. Typically, these cells have equal dimensions
and a finite size, whereas the lattice itself can be finite or infinite. The lattice can
be further categorized according to its dimensionality. So in the case of CA with
1 dimension, their lattice is named elementary cellular automata (ECA) and their

cells are placed in a linear string. On the other hand if they are comprised of 2
dimensions the lattice becomes a grid [12].

. The cells’ states: At each site of the lattice, called cell, a physical quantity takes
specific values. This value refers to the local state of the cell at any given time,
whilst the global state of the CA’s cells is characterized as its global configuration.
[1]. Distinct states are usually represented by an integer. However, there are
many cases in which cells inherit a continuous range of values and, therefore,
the lattice is called a coupled map lattice (CML) respectively. Depending on the
shape of the lattice, each cell has a fix size, which in the case of rectangular grids
it is typically a [X I square.

. The cells’ neighborhoods: For every cell a neighborhood is defined that locally
determines the evolution of the cell. The neighborhood consists of the target cell
itself and some or all of the immediately adjacent cells. Each cell is restricted
to local neighborhood interaction and as a result it is incapable of immediate
global communication. Nevertheless, the state of each cell is altered simultane-
ously at any given time step based on conditions occurring at its neighborhood
at the preceding time step. Generally, there are two types of neighborhood used
in CA. The first one, called von Neumann neighborhood, includes along with the
target cell its four adjacent cells to the north, east, south and west. The second
one, named Moore neighborhood, contains the previous cells plus the ones on the
northeast, southeast, southwest and northwest of current cell. The two types

are illustrated in Figure [12].

. The local transition rules: The algorithm used to compute and update the cells’
states is known as the CA’s local transition rule. The rule acts upon a neighbor-
hood in such a way that changes the cell’s state from one time step to the next.
Consequently, the CA involves in time as the transition rule takes effect and is
applied to all the cells in parallel. The nature of the rule determines also the
type of the CA. In the unusual case of more than one rules existing for the tran-
sition process the term hybrid CA is used. On the other hand, if the rule contains
no stochastic components the CA is referred to as a deterministic CA, whereas
if the converse is true, then the CA becomes a stochastic (or probabilistic) CA. It
is worth mentioning that the transition rule is directly connected to a certain
computational function, capable of transforming the CA’s global configuration
in time, hence it also known as the configuration map.

...................................

Figure 2.1: CA Neighborhoods: von Neumann (left), Moore (right) [12]

3. FIRE PROPAGATION MODEL

Based on the concepts described in Section [2|it is believed that CA are the best mod-
els to represent fire propagation in a homogeneous environment, such as a forest.
Their ability to embed simple rules of evolution, that correspond to complex math-
ematical differential equations, make them the perfect candidate for modeling the
phenomenon.

In present section the CA model for fire spreading in a forest field is presented. The
proposed methodology incorporates a 2-dimensional grid, which corresponds to the
forest area and maps different landscape units or patches of ground to the grid’s cells.
Though in many past cases, forest fires are simulated through the use of hexagonal
cells, e.g. the research of [24], in current work the rectangular cell grid is preferred
and utilized, with the aim of simplifying the necessary calculations and providing
a more easily adaptable solution. Consequently, the shape of each cell is set to be a
square with dimensions [x I, where [represents ground units in meters, and is defined
based on the forest in question. The target forest can be simulated by acquiring the
given area from a satellite image and converting it in a 2D array. However, for the
purposes of current work a randomly generated forest area will be generated in order
to test the model and its qualities, which adopts the framework proposed in the work
of [21]].

3.1. IMPLEMENTED METHODOLOGY

The proposed methodology implements fire fronts by including fire evolution rules,

which update the states of particular cells and their neighborhoods, and consequently

CA’s global configuration, over discrete time and space in a stochastic manner. Specif-

ically we assume the following;:

1.

A

A random forest is generated and mapped to the 2-dimensional CA using a
probability function.

The are four possible states where each cell can be found in at a specific in-
stance in time, that correspond to forest fuel currently burning, forest fuel not
yet burned, forest fuel completely burned down, and fuel-free forest ground.

A forest cell cannot be re-burned.
If a forest cell catches fire, then it is completely burned in one discrete time step.
The fire spreads from one burning cell to its neighbor cells probabilistically.

The probability of fire propagation depends on the variables: type of vegetation,
density of vegetation, speed and direction of wind, and ground elevation.

Each of the aforementioned variables affects the fire growth independently.

The values for these variables are specified a priory to the simulation, based on
geographical data received from the papers of [21][22].

3.2. DEFINITION OF CELL STATES

Every cell in the forest grid is characterized by a specific state, which evolves in dis-

crete time steps. There are four possible states for each cell. These are:

State 0: The cell contains no forest fuel. Thereafter, it is not flammable and
cannot be burned.

State 1: The cell contains forest fuel, which has not yet been ignited and remain
unburned.

State 2: The cell contains forest fuel that has been ignited and is currently burn-

ing.

State 3: The cell contains forest fuel that has been already completely burned.

As already stated the states of all cell at a discrete time step define the global config-
uration of the CA. These states can be coded to a 2D matrix accordingly. This matrix
is called the State Matrix, and an example of it can be seen in Figure [25].

State: State: State: State:
Burned Burned Burning No-fuel
(3) (3) (2) (0)
State: State: State: State: B]
Burned Burning Burning Unburned 3 3 2 0
(3) (2) (2) (1)
3 2 2 i1
State: State: State: State: l) 2 0 1
Burning Burning No-fuel Unburned
(2) (2) (0) (1) . . . 0
State: State: State: State: h -
Unburned | Unburned | Unburned No-fuel
(1) (1) (1) (0)

Figure 3.1: Random State Matrix

3.3. RULES OF TRANSITION

The evolution rules define the way in which the CA evolves in time. At each discrete
time step f the rules take effect in all cells simultaneously. In order to model this effect
the proposed transition rules are applied to all elements (i,j) of the state matrix. These
rules are as follows:

o Rule 1: IF state(i,j,t) = 0 THEN state(i,j,t+1) = 0. This rule denotes that a cell with
no forest fuel remains the same after a time step and cannot catch fire.

o Rule 2: IF state(i,j,t) = 2 THEN state(i,j,t+1) = 3. This rule implies that a cell that
has caught fire in time step t will be completely burned in time step t+1.

o Rule 3: IF state(i,j,t) = 3 THEN state(i,j,t+1) = 3. This rule defines that a forest cell
that has been burned will remain in the same state in the next time steps and
cannot catch fire again.

o Rule 4: IF state(i,j,t) = 2 AND state(i£1,j+1,t) =1 THEN state(i+1,j£1,t+1) = 2 with
p. This rule inclines that a burning cell can ignite neighboring cells and spread
the fire with a probability p, depending on the forest environmental factors oc-
curring in the neighborhood Figure [3.2][5].

il 7
'/ / A cell’s state

corresponds to a number
A\ of environmental factors

7N
Y
i

Figure 3.2: Possible fire growth positions based on probability p [5].

3.4. FIRE PROPAGATION ENVIRONMENTAL FACTORS

In current subsection the transition differential equation for the fire propagation prob-
ability is provided, along with the definition of the environmental factors that influ-
ence its outcome. In this context, the concepts described below are validated.

The probability of a forest cell catching fire, symbolized as py,, is calculated by the
equation:

Pourn = ph(l + pveg)<1 + pden)pwps (31)

where pj, is considered to be a constant probability that a cell, witch is adjacent to
a burning cell, under no other factoring conditions will catch fire at the next time
step. On the other hand, the variables p,c,, Dgen, Pw, and ps denote the probabilities
of fire propagation according to the type of vegetation, the density of vegetation,
the wind speed and direction, and the ground elevation (slope) occurring in the cell,
respectively. All these environmental factors are multiplied by the p, constant, in
order to finally acquire the corrected possibility of fire spreading.

The probabilities of vegetation type (p,.,) and density pg.,, are split into a number of
specific categories, where each category adopts a discrete value. These categories are
shown in Tables and Their combination represents the number of possible
cases that can be found in the forest in relation to its vegetation. It is worth stating that
in order to illustrate the different combinations, in regards to the State Matrix, the two
factors are further organized into similar matrices, the Vegetation Matrix and Density
Matrix, where each element is assigned one of the classification values [21]].

Table 3.1: Vegetation Type Classification

Categories
Classes Type Value
1 Plants -0.3
2 Bushes 0
3 Trees 0.4

Table 3.2: Vegetation Density Classification

Categories
Classes Density Value
1 Sparse -0.4
2 Normal 0
3 Dense 0.3

The above values are the ones used in current experiment. However, they can vary

depending on the target forest and can be obtained from geographical data sets. The

same is valid for the case of modeling the probability of the wind effect, which is

declared by the following equation:

Pw = exp(ciV) f;

where f; is calculated as follows:

fir = exp(caV (cos(0,) — 1))

Replacing f; in equation [3.2] with the one in [3.3|we get:

pw = exp(c1V)exp(caV (cos(8y,) — 1))

(3.2)

(3.3)

(3.4)

where ¢y, ¢, are constants based on gathered environmental data, V is the wind veloc-

ity and 6,, represents the angle between the fire propagation and the wind direction,

which can take any continuous values between 0° and 360°.

10

The last probability factor relates to the slope angle between the burning cell and the
neighboring cell and depends on the ground elevation difference. The equation that
models this effect is presented below:

ps = exp(ads) (3.5)

where « is a constant, that can be adjusted from experimental data, and «, defines
the slope angle. Due to the fact that the implemented CA is being modeled as a
rectangular grid, depending on whether the two neighboring cells are adjacent or
diagonal to the burning cell the value of §; is calculated differently. So in the case of
adjacent cells we have the following equation for 6:

93 = tcm_l((El — Ez)/l) (36)

whereas in the case of diagonal cells the above equation takes the form of:

0, = tan " ((Ey — F»)/1V?2) (3.7)

In both cases the | refers to the specified length of the cells’ square side, whilst E; and
E, denote the altitudes (ground (E)levations) of the two cells, respectively. In order to
model the different altitudes, a similar approach to the vegetation type and density
was used and so the Slope Matrix was created, which receives values for its elements
based on Table The values in this table are selected randomly. However, it is
possible to gain exact information regarding certain forest ground elevations from
corresponding geological data sets.

The rest of the used variables, found in equations and were
optimized for the CA’s algorithm and are listed in Table These values are based

on the work of [21]. Nevertheless, they can be adjusted to correspond to all forest fire
situations or changed according the chosen CA implementation.

11

Table 3.3: Ground Elevation Classification

Categories
Classes Altitude Value
Flat
Extremely Low

Very Low

Low

Quite Low
Average

Quite High
High

Very High
Extremely High

O 0 NI O U1 = W N =
O 0 NI O U = WO N -

—_
o
—_
(@)

Table 3.4: Environmental Factor Analysis

Factors
Variable Value
Dh 0.58
o 0.078
1 0.045
Co 0.131
1% 9
[2

4. FIRE SPREADING SIMULATION

The model described in Section (3| provides the guidelines for the development of a
fire spread testing program. In this way it is possible to recreate the fire conditions
and apply them to a certain forest, with the goal of generating a simulation of the
tire propagation in relation to time and the specific landscape. For the purposes of
this study a program was written in the C programming language using the platform
of DevC++, that uses the generated data to illustrate the fire growth in a text file
using simple text symbols. For a screen-shot regarding an example of the simulation
process, in intervals of 5 time steps, please see Figure

12

Time Step 10

Time Step 1 Time Step 5

Time Step 15 Time Step 20 Time Step 25

Figure 4.1: Fire Propagation Simulation Text Output

For the simulation 4 symbols were used (Table [4.1), that represent the 4 CA states:

Table 4.1: Definition of Simulation Symbols

Symbol Definition

blank (space) Area with no forest fuel

* (asterisk) Area with forest fuel that has not been burned

A (caret) Area with forest fuel that is currently burning

- (hyphen) Area with forest fuel that has been burned and cannot be ignited

13

The first part of the program, Listing [1} lists the necessary libraries, and defines and
initializes the variables used, which are based on the elements described in previous
sections. In addition, it opens the appropriate text file for writing, in order to save the
data and illustrate the simulation. The CA grid that is created has dimensions 100 x
100 and the simulation time steps that will take place are set to reach 70 in number
before terminating the simulation program.

9

#include <stdio.h>
#include <stdlib .h>
s|#include <time.h>
#include <math.h>

#define LENGIH 100 // area length
7| #define WIDIH 100 // area width
#define TIME 70 // total time of simulation in timesteps

int main(int argc, char xargv[]) {

FILE x«fire = fopen("fire_simulation.txt", "w+") ;
sl if (fire == NULL){

printf("\nError opening file! \n") ;

i)

71 // variables’ declaration and initialization
int i =0, j=0,r=0,c=0,1=2, anglew = 180, conl = 0.045, con2 =
0.131, V=9, timestep = 0, stateMatrix [LENGIH][WIDIH] = {0},

nextStateMatrix [LENGIH][WIDTH] = {0};

int vegMatrix [LENGIH][WIDIH] = {0}, denMatrix [LENGIH][WIDIH]
slopeMatrix [LENGIH][WIDIH] = {0};

char forestMatrix [LENGIH][WIDIH] = {0};

float p =1, p_.burn = 1, p_h = 0.58, p_veg = 1, p_.den = 1, pw
1, a = 0.078;

Il
—_—
o
—_
~

1l

—_
~
ae]
l(ll

I

Listing 1: Libraries and Variables

For the next part of the simulation, Listing [2, a randomly generated forest is created,
using the rand() function, and mapped to the 2-dimensional array that represents the
CA’s grid. Each cell of the grid corresponds to an element of the array. Furthermore,
according to the structure of the generated forest CA, the State Matrix, the Vegetation
Matrix, the Density Matrix, and the Slope Matrix are also created, accordingly.

14

srand ((int)time (NULL)) ;

s| // rendomly generating trees in an area grid with size LENGIH x WIDIH and

initializing slope and vegetation type and density
for (i=0; i<LENGIH; i++){
for (j=0; j<WIDIH; j++){
slopeMatrix[i][j] = (rand () % 10) + 1;
i = rand () % LENGIH;
j = rand () % WIDIH;

if (forestMatrix[i][j] == 0){
forestMatrix[i][j] = "*’;
stateMatrix[i][j] = 1;
nextStateMatrix[i][j] = 1;
vegMatrix[i][j] = (rand () % 3) + 1;
denMatrix[i][j] = (rand () % 3) + 1;

Listing 2: Generation of CA forest and state metrices

In order to commence the fire simulation a flame must ignite a cell in the CA. That cell
must contain flammable substances, which means it must be an element of the array
that holds some kind of forest vegetation, symbolized with the number 1 in the State
Matrix. This cell is selected randomly at time step 1. At that point the state of that cell
changes to 2, which indicates that the forest material is now burning and can in turn
spread the fire in its neighborhood according to a probability py,,,, Listing {3 If a cell
with no vegetation is selected, then the program iterates until it chooses a flammable
grid cell. When it does find such a cell, then the corresponding forestMatrix cell also
changes from an * to a A, indicating the fire ignition.

15

o

//Somewhere in the forest a fire is ignited

i

j

rand () % LENGTH;
rand () % WIDIH;

if (stateMatrix[i]]
stateMatrix [i][]
forestMatrix[i]]
}

o| else {

while (stateMatrix[i][j]!=1){

i = rand () % LENGIH;

j = rand () % WIDIH;

if (stateMatrix[i][j] == 1){
stateMatrix[i][j] = 2;
forestMatrix[i][j] = "*';
break;
}

i1 == 1){
1 = 2;
j

1 ="

Listing 3: Fire iginition somewhere in the forest

The calculation of the CA’s global configuration takes place in a while{ } loop, which for
every passing time step, it calculates for each element of the CA’s array its state in the
next discrete time step according to the transition rules, described in Section [2|and
defined in the loop, with the use of nested if/else statements. In order to compute the
probability py,., for a burning cell to transport the fire to a neighboring cell, the pro-
gram draws values from the vegetation, density, and slope matrices and calculates the
probabilities pycg, pacrn, and ps, respectively. Moreover, it estimates the p,, probability
based on the declared variables. The transition rules are applied simultaneously on
all array elements. To be able to implement this attribute another temporary matrix
was created, called the Next State Matrix, which hosts all the necessary information
for updating the cells’ states during the next time step. For more information on the

implementation process please refer to | |

For the last part of the simulation (Listing [4), the program prints the results of each

passing time step, by comparing the State Matrix with the Next State Matrix and up-
dating the necessary data. This continues until the number of completed time steps

16

N

reaches the declared limit of 70.

// printing forest grid after each fire spreading timestep
for (i=0; i<lENGIH; i++){
for (j=0; j<WIDIH; j++){
if (stateMatrix[i][j]==3){
forestMatrix[i][jl="—";
}
else if (stateMatrix[i][j]==2){
forestMatrix[i][j]=""";
}
else if (stateMatrix[i][j]==0 || stateMatrix[i][j]==1){
// forestMatrix cell state remains the same
}
printf ("%c ", forestMatrix[i][j]);
fprintf (fire, "%c ", forestMatrix[i][j]);
}
printf("\n");
fprintf (fire ,"\n");

// updating forest grid to next state
for (i=0; i<LENGIH; i++){
for(j=0; j<WIDIH; j++){
stateMatrix[i][j] = nextStateMatrix[i][j];
}
printf("\n");
}

Listing 4: Global Configuration update after each time step

To better understand the results of the experiment the simulation was repeated for a
tull forest grid, where all 10000 array elements contained flammable material (veg-
etation). The aim was to generate a graph, which explains the behavior of fire in a
forest landscape with the aforementioned parameters. The result of this action is il-
lustrated in Figure |2, which successfully depicts fire behavior in forest environments
by showing the progression of total burned cells in time. The allocation of the graph
can be explained if we consider that at time step 1 a vegetation cell catches fire, but
does not burn until the next time step. From that point on, for each passing time step,
cells start to be ignited in almost exponential rate due to the fact that more and more
cells are burning and therefore can spread the fire. So we can see a dramatic increase
in burned cells overtime. However, after a considerable amount of time has passed,

17

the fire begins to decline and eventually stabilizes at a certain number of burned cells,
which in this example case scenario was somewhere just above 8000 cells. This phe-
nomenon occurs because, by that time step, most cells in the CA are already burned,
and consequently the fire cannot spread any further and eventually dies out. The
simulation continuous until all involved cells are burned and the available time steps
expire.

Fire Simulation

a
E
2

7 8 9 1011121314151617 18192021

Figure .2: Fire Propagation Simulation Graph

A. CONCLUSIONS AND FUTURE WORK

Present work attempted to provide a fire propagation framework that corresponds
to real life fire circumstances in forest landscapes. The main goal was to formulate
fire propagation parameters and create a model capable of explaining how fire pro-
gresses in time, on a certain area, under specific environmental conditions that relate
to weather and geological data acquired from past literature.

To test the proposed theory, a C program was written that adopts these concepts and
simulates the phenomenon, in a graphical manner, using simple text symbols. The
model was then validated and considered successful due to its graphical representa-

18

tion and accuracy in explaining how fire progresses.

Future work may turn around the adoption of extra geographical and ecological fac-
tors that affect fire growth. However, it will be extremely important not to limit the
scope only to ecosystem variables. On the contrary, it is considered especially mean-
ingful to search for ways to insert into the model additional variables that relate to
human reaction, such as fire suppression techniques by firefighters, or man-made
constructions, such as cities or villages. This could lead to models that not only suc-
cessfully predict the outcome of fires in forest or urban systems, but also could help
in discovering new potential methods of fire repression, whilst avoiding negative
consequences that emanate from uncontrolled wildfires.

REFERENCES

[1] L Karafyllidis and A. Thanailakis, “A model for predicting forest fire spreading
using cellular automata,” Ecological Modelling, vol. 99, no. 1, pp. 87-97, 1997.

[2] A. H. Encinas, L. H. Encinas, S. H. White, A. M. del Rey, and G. R. Sanchez,
“Simulation of forest fire fronts using cellular automata,” Advances in Engineering
Software, vol. 38, no. 6, pp. 372-378, 2007.

[3] E Williams, “Mechanisms of fire spread,” in Symposium (international) on Com-
bustion, vol. 16, pp. 1281-1294, Elsevier, 1977.

[4] Y. Wu, E H. Sklar, K. Gopu, and K. Rutchey, “Fire simulations in the ever-
glades landscape using parallel programming,” Ecological Modelling, vol. 93,
no. 1, pp. 113-124, 1996.

[5] X.Liand W. Magill, “Modeling fire spread under environmental influence using
a cellular automaton approach,” Complexity International, vol. 8, pp. 1-14, 2001.

[6] W.W. Hargrove, R. Gardner, M. Turner, W. Romme, and D. Despain, “Simulating
fire patterns in heterogeneous landscapes,” Ecological modelling, vol. 135, no. 2,
pp- 243-263, 2000.

[7] E A. Sousa, R. J. dos Reis, and J. C. Pereira, “Simulation of surface fire fronts
using firelib and gpus,” Environmental Modelling & Software, vol. 38, pp. 167-177,
2012.

19

[8] A. KULESHOV and E. MYSHETSKAYA, “Numerical simulation of forest fires
based on 2d model,”

[9] D. R. Weise and G. S. Biging, “A qualitative comparison of fire spread models
incorporating wind and slope effects,” Forest Science, vol. 43, no. 2, pp. 170-180,
1997.

[10] E. Pastor, L. Zarate, E. Planas, and J. Arnaldos, “Mathematical models and cal-
culation systems for the study of wildland fire behaviour,” Progress in Energy and
Combustion Science, vol. 29, no. 2, pp. 139-153, 2003.

[11] R. C. Rothermel, “How to predict the spread and intensity of forest and range
fires,” The Bark Beetles, Fuels, and Fire Bibliography, p. 70, 1983.

[12] J. Quartieri, N. E. Mastorakis, G. Iannone, and C. Guarnaccia, “A cellular au-
tomata model for fire spreading prediction,” Latest Trends on Urban Planning and
Transportation, pp. 173-178, 2010.

[13] M. A. Finney, “Mechanistic modeling of landscape fire patterns,” Spatial Model-
ing of Forest Landscapes: Approaches and Applications. Cambridge University Press,
Cambridge, pp. 186-209, 1999.

[14] A. Lopes, A. Sousa, and D. Viegas, “Numerical simulation of turbulent flow
and fire propagation in complex topography,” Numerical Heat Transfer, Part A:
Applications, vol. 27, no. 2, pp. 229-253, 1995.

[15] J. v. Neumann and A. W. Burks, “Theory of self-reproducing automata,” 1966.

[16] S. Wolfram, “Universality and complexity in cellular automata,” Physica D: Non-
linear Phenomena, vol. 10, no. 1, pp. 1-35, 1984.

[17] S. Yassemi, S. Dragiéevi¢, and M. Schmidt, “Design and implementation of an in-
tegrated gis-based cellular automata model to characterize forest fire behaviour,”
Ecological Modelling, vol. 210, no. 1, pp. 71-84, 2008.

[18] A. Ohgai, Y. Gohnai, and K. Watanabe, “Cellular automata modeling of fire
spread in built-up areasaATa tool to aid community-based planning for disaster

mitigation,” Computers, environment and urban systems, vol. 31, no. 4, pp. 441-460,
2007.

[19] A. Ohgai, Y. Gohnai, S. Ikaruga, M. Murakami, and K. Watanabe, “Cellular au-
tomata modeling for fire spreading as a tool to aid community-based planning

20

[20]

[21]

[22]

[23]

[24]

[25]

for disaster mitigation,” in Recent Advances in Design and Decision Support Systems
in Architecture and Urban Planning, pp. 193-209, Springer, 2004.

S. G. Berjak and J. W. Hearne, “An improved cellular automaton model for sim-
ulating fire in a spatially heterogeneous savanna system,” Ecological Modelling,
vol. 148, no. 2, pp. 133-151, 2002.

A. Alexandridis, D. Vakalis, C. I. Siettos, and G. V. Bafas, “A cellular automata
model for forest fire spread prediction: The case of the wildfire that swept
through spetses island in 1990,” Applied Mathematics and Computation, vol. 204,
no. 1, pp. 191-201, 2008.

A. Alexandridis, L. Russo, D. Vakalis, G. Bafas, and C. Siettos, “Wildland fire
spread modelling using cellular automata: evolution in large-scale spatially het-
erogeneous environments under fire suppression tactics,” International Journal of
Wildland Fire, vol. 20, no. 5, pp. 633-647, 2011.

S. Wolfram, “Statistical mechanics of cellular automata,” Reviews of modern
physics, vol. 55, no. 3, p. 601, 1983.

G. A. Trunfio, “Predicting wildfire spreading through a hexagonal cellular au-
tomata model,” in Cellular Automata, pp. 385-394, Springer, 2004.

X. Liu, J. Zhang, Z. Tong, and Y. Bao, “Grassland fire disaster spreading simu-
lation based on cellular automata,” in Recent Advances in Computer Science and
Information Engineering, pp. 623-628, Springer, 2012.

21

32

APPENDIX A

#include <stdio.h>
#include <stdlib .h>
#include <time.h>
#include <math.h>

o|#define LENGIH 100 // area length

#define WIDTH 100 // area width
#define TIME 15 // total time of simulation in timesteps

int main(int argc, char xargv[]) {

FILE «fire = fopen("fire_simulation.txt", "w+") ;
if (fire == NULL) {
printf("\nError opening file! \n") ;

)

// variables’ declaration and initialization

int i =0, j=0,r=0,c=0,1=2, anglew = 180, conl = 0.045, con2 =
0.131, V=9, timestep = 0, stateMatrix [LENGIH][WIDIH] = {0},
nextStateMatrix [LENGIH][WIDIH] = {0};

int vegMatrix [LENGIH][WIDIH] = {0}, denMatrix [LENGIH][WIDTH]
slopeMatrix [LENGIH][WIDIH] = {0};

char forestMatrix [LENGIH][WIDIH] = {0};

float p =1, p.burn = 1, p_h = 0.58, p_veg = 1, p_den = 1, pw
1, a = 0.078;

1l
—_—
o
—_
~

Il
—_
~
“ld
n
Il

// calculation of wind probability
p.w = exp(conl % V) % exp(V % con2 x (cos(angle_w) — 1));

srand ((int)time (NULL)) ;

// rendomly generating trees in an area grid with size LENGIH x WIDIH and
initializing vegetation type and density
for (i=0; i<LENGIH; i++){
for (j=0; j<WIDIH; j++){
slopeMatrix[i][j] = (rand () % 10) + 1;
i = rand () % LENGIH;
j = rand () % WIDIH;

22

36

38

42

44

46

48

56

64

68

if (forestMatrix[i][j] == 0){
forestMatrix[i][j] = "*’;
stateMatrix[i][j] = 1;
nextStateMatrix[i][j] = 1;

(rand () % 3) + 1;

(rand () % 3) + 1;

vegMatrix[i][j]
denMatrix[i][j]

}

fprintf(fire, "A Randomly Generated Forest Environment...\n\n");

// printing forest grid
for (i=0; i<LENGIH; i++){
for (j=0; j<WIDIH; j++){
printf ("%c ", forestMatrix[i][j]);
fprintf (fire, "%c ", forestMatrix[i][j]);
}
printf("\n");
fprintf (fire, "\n");
}
printf ("\n\n\n") ;
fprintf (fire, "\n\n\n");

// printing the vegetation type matrix for each cell
fprintf (fire ,"Vegetation Matrix (1 = Plants, 2 = Bushes, 3 = Trees) \n");
for (i=0; i<LENGIH; i++){
for(j=0; j<WIDIH; j++){
fprintf (fire ,"%d ", vegMatrix[i][j]);
printf ("%d ", vegMatrix[i][j]);
}
fprintf (fire ,"\n");
printf("\n");
}
fprintf (fire ,"\n\n\n");
printf ("\n\n\n") ;

// printint the vegetation density matrix for each cell
fprintf (fire ,"Density Matrix (1 = Sparce, 2 = Normal, 3 = Dense) \n");
for (i=0; i<LENGIH; i++){
for (j=0; j<WIDIH; j++){
fprintf (fire ,"%d ", denMatrix[i][j]);
printf ("%d ", denMatrix[i][j]);
}
fprintf (fire ,"\n");

23

82

84

86

88

92

100

102

104

106

112

114

116

118

printf("\n");
}

fprintf (fire ,"\n\n\n");
printf ("\n\n\n") ;

// printint the slope matrix for each cell
fprintf (fire ,"Slope Matrix (1 — 10 possible ground elevations) \n");
for (i=0; i<LENGIH; i++){
for (j=0; j<WIDIH; j++){
fprintf (fire ,"%d ", slopeMatrix[i][j]);
printf ("%d ", slopeMatrix[i][j]);
}
fprintf (fire ,"\n");
printf("\n");
}

fprintf (fire ,"\n\n\n");
printf ("\n\n\n") ;

printf ("Fire is ignited somewhere in the forest.\n\n");

//Somewhere in the forest a fire is ignited

-
Il

rand () % LENGTH;
rand () % WIDIH;

—
Il

if (stateMatrix[i][j] == 1){
stateMatrix[i][j] = 2;
forestMatrix[i][j] = "*';

}

else {
while (stateMatrix[i][j]!=1){
i = rand () % LENGIH;

j = rand () % WIDIH;

if (stateMatrix[i][j] == 1){
stateMatrix[i][j] = 2;
forestMatrix[i][j] = "*';
break;
}

o| fprintf (fire ," \n\n") ;

24

128

134

138

142

144

146

148

158

160

fprintf (fire ,"Fire Spread Simulation in the specified Forest

fprintf (fire ," \n\n") ;

fprintf (fire ,"Fire Ignition somewhere randomly in the Forest

(Timestep = %d)\n", timestep);

// printing state forest grid
for (i=0; i<LENGIH; i++){
for (j=0; j<WIDIH; j++){
printf ("%d ", stateMatrix[i][j]);
fprintf (fire, "%c ", forestMatrix[i][j]);
}
printf("\n");
fprintf (fire ,"\n");
}
fprintf (fire ,"\n");
printf ("\n\n\n");

printf ("Fire starts speading in the Forest...\n\n");
fprintf(fire, "Fire spread for each passing timestep:\n\n");

while (timestep != TIME) {
fprintf (fire, "\n (Timestep = %d)
+1);

// Rules of Transition
for (i=0; i<LENGIH; i++){

for (j=0; j<WIDTH; j++){

if (stateMatrix[i][j]==0 || stateMatrix[i][j]==3){

// state remains the same

nextStateMatrix[i][j] = stateMatrix[i][j];

continue;

}

else if (stateMatrix[i][j]==1){

if (stateMatrix[i—1][j —1]==2 || stateMatrix[i—1][j]==
[i—1][j+1]==2 || stateMatrix[i][j—1]==2 ||

stateMatrix[i][j+1]==2 || stateMatrix[i+1][j—1]==2 II
+1][j]==2 Il stateMatrix[i+1][j+1]==2){

for (r=i-1; r<=i+1; r++){

for(c=j—1; c<=j+1; c++){

if (stateMatrix[r][c]==2){

p=1;
p_burn=1;
p_s = 1;

N n\n\n");

...\n\n

\n", timestep

|| stateMatrix

stateMatrix[1i

25

164

166

182

184

186

188

192

194

196

198

200

// Calculation of p_veg probability
if (vegMatrix[i][j] == 1){
p_veg = —0.3;

}

else if (vegMatrix[i][j] == 2){
p_veg = 0;

}

else if (vegMatrix[i][j] == 3){
p_veg = 0.4;

}

// Calculation of p_den probability
if (denMatrix[i][j] == 1){

p_den = —0.4;

}

else if (denMatrix[i][j] == 2){
p_den = 0;

}

else if (denMatrix[i][j] == 3){
p_den = 0.3;

}

// Calculation of p_s probability
if (stateMatrix[i—1][j]==2){
p_s = exp(a * atan((slopeMatrix[i—1][j]

}
else if (stateMatrix[i][j+1]==2){
p_s = exp(a * atan((slopeMatrix[i][j+1]

}
else if (stateMatrix[i][j—1]==2){
p_s = exp(a * atan((slopeMatrix[i][j—1]

}
else if(stateMatrix[i+1][j]==2){
p_s = exp(a * atan((slopeMatrix[i+1][j]

}
else if (stateMatrix[i—1][j —1]==2){

slopeMatrix[i][j]) / 1))

slopeMatrix[i][j]) / 1))

slopeMatrix[i][j]) / 1))

slopeMatrix[i][j]) / 1))

p_s = exp(a * atan((slopeMatrix[i—1][j—1] — slopeMatrix[i][j]) /

(1 * sqrt(2))));
}

26

202

204

206

208

210

218

220

226

228

232

236

240

242

else if (stateMatrix[i—1][j+1]==2){
p_s = exp(a * atan((slopeMatrix[i—1][j+1] — slopeMatrix[i][j]) /
(1 % sqrt(2))));
}
else if (stateMatrix[i+1][j—1]==2){
p_s = exp(a * atan((slopeMatrix[i+1][j—1] — slopeMatrix[i][j]) /
(1« sqrt(2))));
}
else if (stateMatrix[i—1][j —1]==2){
p_s = exp(a * atan((slopeMatrix[i+1][j+1] — slopeMatrix[i][j]) /
(1 % sqrt(2))));
}

// Calculation of total p_burn probability
p_burn = p_h * (1 + p_veg) * (1 + p_den) = pw * p_s;

p = ((float)rand () /(float)RAND MAX) ;

if (p »>= p_burn){
//burnMatrix[i][j] = ">’; // updating burnMartix with the symbol >
nextStateMatrix[i][j]=2;
break;
}
}
else {
// state remains the same
continue;

else{
// state remains the same
continue;

else if (stateMatrix[i][j]==2){
nextStateMatrix[i][j] = 3;
continue;

}

27

244

246

248

N
Sl
o

254

260

264

268

272

278

280

282

fprintf (fire ,"\n\n");

// printing forest grid after each fire spreading timestep
for (i=0; i<LENGIH; i++){
for (j=0; j<WIDIH; j++){
if (stateMatrix[i][j]==3){
forestMatrix[i][j]l="—";
}
else if (stateMatrix[i][j]==2){
forestMatrix[i][j]=""";
}
else if (stateMatrix[i][j]==0 || stateMatrix[i][j]==1){
// forestMatrix cell state remains the same
}
printf ("%c ", forestMatrix[i][j]);
fprintf (fire, "%c ", forestMatrix[i][j]);
}
printf("\n");
fprintf (fire ,"\n");

// updating forest grid to next state
for (i=0; i<lENGIH; i++){
for(j=0; j<WIDTH; j++){
stateMatrix[i][j] = nextStateMatrix[i][j];
}
printf ("\n");
}

timestep = timestep + 1;
printf ("\n\n");

}
printf("That’s all folks!");

fclose(fire);

return 0;

}

Listing 5: Total Simulation program code

28

	Introduction
	Theoretical Background on Cellular Automata
	Fire Propagation Model
	Implemented Methodology
	Definition of Cell States
	Rules of Transition
	Fire Propagation Environmental Factors

	Fire Spreading Simulation
	Conclusions and Future Work

